309 Make-up Final exam 12-15-09

Name:

Throughout the exam we define the set of natural numbers by $\mathbb{N}=$ $\{1,2,3, \ldots\}$. No calculators allowed! Show all your work and justify your answers.
(1) [14pts] Consider the set of polynomials

$$
B=\left\{x^{3}+3 x^{2}, x^{2}+3 x, x+3, x^{3}+4 x^{2}+4 x+4\right\} \subseteq \mathbb{P}_{3}
$$

Show that B is a basis of \mathbb{P}_{3}.
(2) Let V be a finite dimensional vector space and $S, T \subseteq V$ subspaces of V. Show:
(a) $[9 \mathrm{pts}] S \cap T$ is a subspace of V.
(b) $[6 \mathrm{pts}] \operatorname{dim}(S \cap T) \leq \operatorname{dim}(T)$.
(3) Consider the set

$$
S=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R} \text { and } a-b+2 c+3 d=0\right\} \subseteq \mathbb{R}^{4} .
$$

(a) $[9 \mathrm{pts}]$ Show that S is a subspace of \mathbb{R}^{4}.
(b) $[3 \mathrm{pts}]$ Show $S \neq \mathbb{R}^{4}$ by exhibiting a vector in \mathbb{R}^{4} that does not lie in S.
(c) [6pts] By direct inspection, find three vectors in S that are linearly independent. Show your list is linearly independent.
(d) $[3 \mathrm{pts}]$ Conclude that S has dimension three.
(4) Let V be a vector space and $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n+1}\right\} \subseteq V$ a set of linearly independent vectors of V. Show directly: (Don't just quote a theorem!)
(a) [8pts] The set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent.
(b) $[8 \mathrm{pts}] \mathbf{v}_{n+1} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
(5)[12pts] Prove by induction on n that $11^{n}-4^{n}$ is divisible by 7 for all $n \in \mathbb{N}$.
(6)[16pts] Let V be an infinite dimensional vector space. Use induction to show that for every $n \in \mathbb{N}$ there is a subspace $S_{n} \subseteq V$ with $\operatorname{dim}\left(S_{n}\right)=n$.
(7) Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the linear function given by:

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
a+b \\
a-2 b+2 c
\end{array}\right]
$$

(a) [7pts] Find the matrix of T with respect to the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}.
(b) $[6 \mathrm{pts}]$ Is T one-to-one? Justify your answer!
(c) [5pts] Is T onto? Justify your answer!
(8) Let $T: \mathbb{R}^{6} \longrightarrow \mathbb{M}(3,2)$ be a linear function. Show:
(a) $[10 \mathrm{pts}]$ If T is one-to-one, then T is onto.
(b) [10pts] If T is onto, then T is one-to-one.
(9) Let A be an $m \times n$ matrix and $\mu_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ the linear function defined by $\mu_{A}(\mathbf{v})=A \mathbf{v}$. Show:
(a) [10pts] The image of μ_{A} is a subspace of \mathbb{R}^{m}.
(b) $[6 \mathrm{pts}]$ The vector \mathbf{b} lies in the image of μ_{A} if and only if the non-homogenous linear system $A \mathbf{x}=\mathbf{b}$ has a solution.
(10)[16pts] Let A be an $n \times n$ matrix and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}-\{\mathbf{0}\}$ with $A \mathbf{v}=-\mathbf{v}$ and $A \mathbf{w}=3 \mathbf{w}$. Show directly that the set $\{\mathbf{v}, \mathbf{w}\}$ is linearly independent. (Don't just quote a theorem!)
(11)[16pts] Consider the ordered basis

$$
B=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

of \mathbb{R}^{3} and the linear function $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ given by:

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{c}
a+c \\
2 a+b+c \\
b+c
\end{array}\right]
$$

Find the matrix of T with respect to the basis B.
(12) Let $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.
(a) $[6 \mathrm{pts}]$ Find the characteristic polynomial of A.
(b) $[4 \mathrm{pts}]$ Find the eigenvalues of A.
(c) $[6 \mathrm{pts}]$ For every eigenvalue find an eigenvector of A.
(d) [4pts] Find an invertible matrix P so that $P^{-1} A P$ is a diagonal matrix. You do not need to verify that $P^{-1} A P$ is a diagonal matrix.

