# Selected papers * [Sharp bounds for max-sliced Wasserstein distances](https://arxiv.org/abs/2403.00666) M. T. Boedihardjo Foundations of Computational Mathematics (to appear) * [Private measures, random walks, and synthetic data](https://link.springer.com/content/pdf/10.1007/s00440-024-01279-z.pdf) M. Boedihardjo, T. Strohmer, R. Vershynin Probability Theory and Related Fields (2024) * [Matrix Concentration Inequalities and Free Probability](https://web.math.princeton.edu/~rvan/mconcfree-230228.pdf) A. S. Bandeira, M. T. Boedihardjo, R. van Handel Inventiones Mathematicae (2023) * [Covariance's Loss is Privacy's Gain: Computationally Efficient, Private and Accurate Synthetic Data](https://link.springer.com/article/10.1007/s10208-022-09591-7) M. Boedihardjo, T. Strohmer, R. Vershynin Foundations of Computational Mathematics (2022) * [C*-algebras isomorphically representable on $l^p$](https://arxiv.org/abs/1812.11165) M. T. Boedihardjo Analysis & PDE (2020)
# Other papers * [Embedding $C^{*}$-algebras into the Calkin algebra of $\ell^{p}$](https://arxiv.org/abs/2409.07386) M. T. Boedihardjo Journal of Functional Analysis (2024) * [Metric geometry of the privacy-utility tradeoff](https://arxiv.org/abs/2405.00329) M. Boedihardjo, T. Strohmer, R. Vershynin * [Covariance loss, Szemeredi regularity, and differential privacy](https://arxiv.org/abs/2301.02705) M. Boedihardjo, T. Strohmer, R. Vershynin Proceedings of the American Mathematical Society (to appear) * [Privacy of synthetic data: a statistical framework](https://arxiv.org/abs/2109.01748) M. Boedihardjo, T. Strohmer, R. Vershynin IEEE Transactions on Information Theory (2022) * [Private sampling: a noiseless approach for generating differentially private synthetic data](https://arxiv.org/abs/2109.14839) M. Boedihardjo, T. Strohmer, R. Vershynin SIAM Journal on Mathematics of Data Science (2022) * [A Performance Guarantee for Spectral Clustering](https://arxiv.org/abs/2007.05627) M. Boedihardjo, S. Deng, T. Strohmer SIAM Journal on Mathematics of Data Science (2021) * [Estimation of expected value of function of i.i.d. Bernoulli random variable](https://arxiv.org/abs/1909.05837) M. T. Boedihardjo * [Multiplication operators on $L^p$](https://arxiv.org/abs/1707.04798) M. T. Boedihardjo Studia Mathematica (2019) * [Similarity of operators on $l^p$](https://arxiv.org/abs/1706.08582) M. T. Boedihardjo * [Calkin representations for $L^p$](https://arxiv.org/abs/1707.09658) M. T. Boedihardjo Integral Equations Operator Theory (2019) * [On algebra-valued R-diagonal elements](https://arxiv.org/abs/1512.06321) M. Boedihardjo and K. Dykema Houston Journal of Mathematics (2018) * [Asymptotic *-moments of some random Vandermonde matrices](https://www.sciencedirect.com/science/article/pii/S0001870816302870) M. Boedihardjo and K. Dykema Advances in Mathematics (2017) * [Remarks on “Weak limits of almost invariant projections” by Foias, Pasnicu and Voiculescu](https://arxiv.org/abs/1411.3343) M. T. Boedihardjo Operators and Matrices (2017) * [A coordinate free characterization of certain quasidiagonal operators](https://arxiv.org/abs/1401.5829) M. T. Boedihardjo Indiana University Mathematics Journal (2015) * [On mean ergodic convergence in the Calkin algebras](https://www.ams.org/journals/proc/2015-143-06/S0002-9939-2015-12432-X/S0002-9939-2015-12432-X.pdf) M. T. Boedihardjo and W. B. Johnson Proceedings of the American Mathematical Society (2015)
# Selected seminar talks * Max-sliced Wasserstein distances Stochastics Seminar, Georgia Institute of Technology, 25 April 2024 * Covariance Loss and privacy One World MINDS Seminar, 14 September 2023 * Spectral norm and strong freeness Probabilistic Operator Algebra Seminar, University of California, Berkeley, 21 August 2023 * Spectral norm of random matrices Data Science Seminar, University of Minnesota, 24 January 2023 * Sharp Matrix Concentration Department Seminar, Department of Statistics and Data Science, Yale University, 7 November 2022 * Spectral norms of Gaussian matrices with correlated entries Probability Seminar, University of California, San Diego, 29 April 2021 # Selected conference talks * Covariance loss and privacy ICERM, Connecting Higher-Order Statistics and Symmetric Tensors, 9 January 2024 * Private synthetic data FOCM 2023, Computational Harmonic Analysis and Data Science, 16 June 2023 * Sharp Matrix Concentration Simons Institute, Deep Learning Theory Symposium, 6 December 2021 * Non-Commutative Concentration Inequalities (cont.) Oberwolfach, Applied Harmonic Analysis and Data Science, 1 December 2021 * Brown-Douglas-Fillmore theorem for l^p Great Plains Operator Theory Symposium, 28 May 2019 (Plenary Speaker)
# Employment 2023-present: Assistant Professor, Michigan State University 2022-2023: Postdoctoral Fellow, ETH Zurich 2021-2022: Visiting Assistant Professor, University of California, Irvine 2019-2021: Assistant Adjunct Professor, University of California, Los Angeles 2016-2019: Hedrick Assistant Professor, University of California, Los Angeles # Education 2012-2016: Ph.D. in Mathematics, Texas A&M University Advisor: [Bill Johnson](https://en.wikipedia.org/wiki/William_B._Johnson_(mathematician)), Co-Advisor: [David Kerr](https://www.uni-muenster.de/FB10srvi/persdb/MM-member.php?id=1539) Other committee members: [Ciprian Foias](https://en.wikipedia.org/wiki/Ciprian_Foias), [Ron Douglas](https://en.wikipedia.org/wiki/Ronald_G._Douglas), [Thomas Schlumprecht](https://people.tamu.edu/~t-schlumprecht), [Tony Cahill](https://engineering.tamu.edu/civil/profiles/acahill.html) 2011-2012: Visiting Scholar, Texas A&M University 2007-2011: B.Sc. and M.Phil in Mathematics, Hong Kong Baptist University Advisor: [Hermann Brunner](https://www.mun.ca/math/our-people/faculty/professores-emeriti/hermann-brunner)