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Part 1

Spectral Theory in Banach Algebras





LECTURE 1

Spectral Theory– an Introduction

In this course we are going to focus on spectral theory for linear operators. The goal
of spectral theory is to understand at a detailed level how a linear operator acts on the
vector space on which it is defined. One key reason for doing this is to make sense of solving
equations, like

∂tψt = Aψt, (1.1)

where ψ is a vector in a Banach space, say, and A is a linear operator. If A is bounded —
recall that this means ‖Aψ‖ ≤ C ‖ψ‖ for all ψ in the Banach space — then we can solve
this equation somewhat formally using the series for the exponential:

ψt = ψ0 +
∞∑
n=1

tn

n!
Anψ0. (1.2)

Exercise 1. Show, if A is bounded then (1.2) defines a solution to (1.1), with ∂tψt
defined as derivative in norm. That is

lim
h→0

∥∥∥∥1

h
(ψt+h − ψt)− ∂tψt

∥∥∥∥ = 0.

This may not be a particularly efficient procedure, and it can fail completely for some
unbounded operators of interest.

For instance, the class of functions ψ0 ∈ L2(R) for which we can solve the Schrödinger
equation

i∂tψt(x) = −∂2
xψt(x) (1.3)

in this way is quite limited. Nonetheless, (1.3) can be solved for any inital ψ0 ∈ L2(R) using
a Fourier transform

ψ̂(k) =

∫ ∞
−∞

e2πikxψ(x)dx. (1.4)

As is well known ψ 7→ ψ̂ defines a unitary (norm preserving) map from L2(R) → L2(R).
(Strictly speaking (1.4) is defined only on L1(R). It has to be extended to L2(R) by taking
limits.) Furthermore one can show, using integration by parts, that ψt satisfies (1.3) if and
only

i∂tψ̂t(k) = 4π2k2ψ̂t(k),

which is easily solved to give

ψ̂t(k) = e−it4π2k2

ψ̂t(k).

It is now simply a matter of inverting the Fourier transform via

ψ(x) =

∫ ∞
−∞

e−2πimkxψ̂(k)dk

to find the solution to (1.3).
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What we have done here is used the Fourier transform to diagonalize the linear operator
−∂2

x. When we put the operator in diagonal form, namely multiplication by 4π2k2, it becomes
easy to solve the differential equation (1.1). This example is the best sort of thing that can
happen and is by no means typical.

Even if we stick to finite dimensional spaces, you might recall that not every matrix can
be diagonalized. It may be useful before going on to recall the spectral theory of matrices.

A first thing you can try to do is to put a matrix in triangular form. That is given
A =

(
ai,j
)n
i,j=1

we look for an invertible matrix S such that B = SAS−1 =
(
bi,j
)n
i,j=1

. This

can be done, of course, as follows: Since det(A−λI) is a polynomial, it has a root. This root

is an eigenvalue. So there is an eigenvector, u1 with eigenvalues λ1. Now let u
(1)
2 , · · ·u(n)

n be
vectors which together with u1 form a basis. The matrix of A in this basis is of the form

A ∼


λ1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(1)
2,2

...
...

. . . . . .
...

0 · · · 0 a
(n)
n,n

 ,

Now repeat the argument with the lower right hand (n−1)× (n−1) block. The result, after
n steps, is an upper triangular matrix.

Unfortunately, there is no analogue of this algorithm for a general bounded operator.
There is a triangular form for compact operators, however, which we will discuss.

When it comes to diagonalizing a matrix, assumptions are needed. You may recall the
Jordan form, which states that every matrix can be transformed, via a similarity transfor-
mation, into a matrix with zero entries except for the diagonal and first super diagonal, and
furthermore only ones and zeros on the super diagonal. However, the number of ones in each
block on the super diagonal is a characteristic of the matrix.

If we want a criteria for diagonalizability, one of the most useful requires a scalar product.

Theorem 1.1. If 〈·, ·〉 denotes any inner product on Cn and A is a matrix such that

AA† − A†A = 0, (1.5)

— where A† is the adjoint of A, 〈u,Av〉 =
〈
A†u, v

〉
— , then A is diagonalizable via a

unitary transformation. In other words, there is an orthonormal basis of eigenvectors.

Remark. A matrix (or operator) which satisfies (1.5) is called normal.

Proof. Let u1 be an eigenvector with eigenvalues λ1. It suffices to show

{u1}⊥ = {u : 〈u, u1〉 = 0}

is an invariant subspace for A and A†, for then we can complete the proof by induction.
Suppose u ∈ {u1}⊥. Then〈

A†u, u1

〉
= 〈u,Au1〉 = λ1 〈u, u1〉 = 0.

That is, A† : {u1}⊥ → {u1}⊥. Now note that

0 = 〈(A− λI)u1, (A− λI)u1〉 =
〈
(A† − λ∗I)(A− λI)u1, u1

〉
=
〈
(A− λI)(A† − λ∗I)u1, u1

〉
=
〈
(A† − λ∗I)u1, (A

† − λ∗I)u1

〉
,
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so
∥∥(A† − λ∗I)u1

∥∥ = 0. In other words, u1 is also an eigenvector of A† with eigenvalue λ∗.

Thus we can reverse the argument above and show that A : {u1}⊥ → {u1}⊥. �

This theorem — diagonalizability of normal operators — has a far reaching generaliza-
tion, namely the spectral theorem for normal operators, which we will see in due course.

The notion of normal depends on the scalar product. In the finite dimensional context,
we have many choices for a scalar product and one can easily show that an matrix is diago-
nalizable if and only if it is normal in some inner product. (We just saw the if. For the only
if take the inner product in which the eigenvectors are orthonormal.) This question becomes
trickier in the infinite dimensional context.

1. Outline of the first part of the course

(1) We are going to start in an abstract setting and derive some general results on
spectral theory of elements of Normed algebras (also called Banach algebras).

(2) We will then look at the implication of these results in the Hilbert space setting.
(3) Next we specialize to the case of normal operators in a Hilbert space and derive the

spectral theorem.
(4) Then we will turn to unbounded operators, which are exceedingly important in

applications, and require a good deal more care.

We’ll see where to go from there. I would like to cover, also, semi-group theory, more
results on compact operators — things like trace class, and the definition of determinant
and trace. Then I would like to look at more details of spectral theory, spectral measures,
scattering theory and perturbation theory. We’ll see what time allows.





LECTURE 2

The spectrum in Banach algebras

Reading: §11.4 and Ch. 17 in Lax
A Banach algebra is a Banach space (completed normed space) A on which we have

defined an associative product so that A is an algebra and such that

‖AB‖ ≤ ‖A‖ ‖B‖ , ‖cA‖ = |c| ‖A‖ .
The motivating example of a Banach algebra is the space L(X) of bounded linear maps from
a Banach space X into itself. It turns out that a good deal of the spectral theory of linear
maps can be carried out in the more general context of Banach algebras. A Banach algebra
may or may not have a unit I, which is an element such that IA = AI = A for all A.

Here are some basic facts about Banach algebras. For the proofs see Lax (or work it
out!):

(1) If A has a unit, then the unit is unique.
(2) Any Banach algebra is a closed sub-algebra of an algebra with a unit. (If A has a

unit there is nothing to prove. If not, consider the space A⊕ C with product

(A, z)(B,w) = (AB + zB + wA, zw)

and norm
‖(A, z)‖ = ‖A‖+ |z|.)

(3) An element A ∈ A is invertible if there exists B ∈ A such that BA = AB = I.
(4) It can happen that A has either a left inverse (BA = I) or a right inverse (AB = I)

but is not invertible.

Exercise 2. Find an example of an operator in L(`2(N)) that has a left inverse
but no right inverse. Can you find one in L(Cn)? Why?)

(5) If A has a left inverse B and a right inverse C then B = C and A is invertible.

Theorem 2.1. The set of invertible elements in A is open. Specifically, if A is invertible
then A+K is invertible provided ‖K‖ < 1/ ‖A−1‖.

Exercise. Using the geometric series to prove this theorem. (Or if you feel lazy, read
the proof in Lax.)

Definition 2.1. The resolvent set of ρ(A) of A is the set of ζ ∈ C such that

ζI − A
is invertible. The spectrum σ(A) of A is the complement of the resolvent set. The resolvent
of A is the map R : ρ(A)→ A given by

R(ζ) = (ζI − A)−1.

It turns out that R(ζ) is an analytic function. To make sense of this, we should first
consider what it means for a Banach space valued function to be analytic.

2-1
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1. Interlude: Analytic functions

Let X be a Banach space.

Definition 2.2. A function f : U → X, with U ⊂ C and open set, is strongly analytic
(or just analytic) if

lim
h→0

1

h
[f(ζ + h)− f(ζ)]

exists as a norm limit for every ζ ∈ U , in which case the limit is denoted f ′(ζ) or d
dζ
f(ζ).

If f is an (Banach space valued) analytic function, the following familiar facts from
complex analysis hold:

(1) If f is analytic so is f ′.
(2) f is analytic if and only if

(a) f has a convergent power series expansion at each point in its domain.
(b) f is continuous and f(ζ) = 1

2πi

∫
C f(z) 1

z−ζdz for any rectifiable closed curve C
that can be contracted to a point in U and with winding number 1 around z.
(The integral can be taken as a Riemann integral since f is continuous.)

Exercise 3. Prove these facts. While you are at it, verify that the Riemann integral
can be defined for norm continuous functions taking values in a Banach space.

You might also define what looks like a weaker notion of analyticity:

Definition 2.3. f is weakly analytic in U if for every ` ∈ X ′ = the dual of X, `(f(ζ))
is a (scalar) analytic function.

Clearly if f is strongly analytic it is weakly analytic. (Why?) What is surprising is the
following

Theorem 2.2. If f is weakly analytic it is strongly analytic.

Proof. By the Cauchy integral formula

`(f(ζ)) =
1

2πi

∫
C

`(f(z))

z − ζ
dz

for a suitably chosen curve C. This formula holds if ζ is moved a little bit, so

`

(
f(ζ + h)− f(ζ)

h
− f(ζ + k)− f(ζ)

k

)
=

1

2πi

∫
C

[
1

h

(
1

z − h− ζ
− 1

z − ζ

)
− 1

k

(
1

z − k − ζ
− 1

z − ζ

)]
`(f(z))dz

=
1

2πi

∫
C

[
1

z − h− ζ
− 1

z − k − ζ

]
`(f(z))

z − ζ
dz

=
(h− k)

2πi

∫
C

1

(z − h− ζ)(z − k − ζ)

`(f(z))

z − ζ
dz.

It follows that∣∣∣∣`( 1

h− k

[
f(ζ + h)− f(ζ)

h
− f(ζ + k)− f(ζ)

k

])∣∣∣∣ ≤ M(`) <∞.
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uniformly for all h, k sufficiently close to 0. By the Principle of Uniform Boundedness, there
is a constant C <∞ such that∥∥∥∥f(ζ + h)− f(ζ)

h
− f(ζ + k)− f(ζ)

k

∥∥∥∥ ≤ C|h− k|.

Thus the limit defining f ′(ζ) exists and f is analytic. �

2. Back to the spectrum

Theorem 2.3. Let A be a Banach algebra. For any A ∈ A the resolvent R(ζ) is analytic
on the resolvent set and the spectrum σ(A) is a non-empty, compact subset of {ζ ≤ ‖A‖}.

Proof. The Neumann series shows R(ζ) has a convergent power series at each point:

R(ζ + h) = ((ζ + h)I − A)−1 =
∞∑
n=0

hn(ζI − Z)n+1

for small enought h. Analyticity follows.
Furthermore, for ζ > ‖A‖ we have

R(ζ) =
∞∑
n=0

An
1

ζn+1
, (2.1)

so σ(A) ⊂ {ζ ≤ ‖A‖}. Since ρ(A) is open it follows that σ(A) is compact.
Integrating (2.1) around a large circle, we obtain∫

|ζ|=r
R(ζ)dζ = 2πiI

for r > ‖A‖. Suppose σ(A) were empty. Then we could contract the circle down to a point
and would obtain 0. Since the result is not 0, σ(A) is note empty. �





LECTURE 3

Spectral radius and the analytic functional calculus

1. Spectral radius

Last time we saw that
σ(A) ⊂ {z ≤ ‖A‖}.

The question comes up as to whether this estimate is sharp. In other words if we let the
spectral radius of A be

sp-rad(A) = max{|z| : z ∈ σ(A)},
then can it happen that

sp-rad(A) < ‖A‖?
A moment’s thought shows this can happen for 2× 2 matrices:

Exercise 4. Find a 2× 2 matrix M with ‖M‖ = 1 and sp-radM = 0.

However, we do have the following

Theorem 3.1. sp-radA = limn→∞ ‖An‖1/n .

Proof. Consider the Laurent expansion of the resolvent around ∞:

R(ζ) =
∞∑
n=0

ζ−n−1An. (3.1)

I claim that this converges whenever |ζ| >
∥∥Ak∥∥ 1

k . Indeed we can write

R(ζ) =

[
k−1∑
m=0

ζ−m−1Am

][
∞∑
n=0

ζ−nkAk

]
.

The first factor is a finite sum and the second converges if the above condition holds. Thus

sp-rad(A) ≤ lim inf
k→∞

∥∥Ak∥∥ 1
k .

On the other hand if we let C = {|z| = sp-rad(A) + δ} then C is a curve in the resolvent
set which winds once around the spectrum. Integrating on this curve and using (3.1) we find

1

2πi

∫
C
ζnR(ζ)dζ = An.

Thus

‖An‖ ≤
[
sup
ζ∈C
‖R(ζ)‖

]
(sp-rad(A) + δ)n+1.

Taking the nth root and sending n to infinity, we get

lim sup
n→∞

‖An‖
1
n ≤ sp-rad(A) + δ.

3-1
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(Why is supζ∈C ‖R(ζ)‖ <∞?)
Since δ was arbitrary, we have

lim sup ‖An‖
1
n ≤ sp-rad(A) ≤ lim inf ‖An‖

1
n

and the result follows. �

2. Functional calculus

The Cauchy integral formula

f(ζ) =
1

2πi

∫
C

f(z)

z − ζ
dz

for scalar analytic functions suggests a way of defining f(A) for A in a Banach algebra.

Definition 3.1. Given an analytic function f , defined in a neighborhood U of σ(A), we
define

f(A) :=
1

2πi

∫
C
f(z)R(z)dz, (3.2)

with R the resolvent of A and C any curve that has winding number 1 around the spectrum
of A and winding number 0 around any point in U c.

Exercise 5. Verify that this definition does not depend on the choice of curve C.

That’s that. We have defined f(A) for any analytic function. For instance

A2 =
1

2πi

∫
C
z2R(z)dz.

WAIT!!!!!! We can’t define A2 it’s already defined! We need to check something. Does
this definition make sense? Yes it does.

Theorem 3.2. Let f(A) be as defined above. Then

(1) For any polynomial p, p(A) (evaluated by algebra) is equal to the r.h.s. of (3.2).
(2) More generally if f has a power series f(z) =

∑
n an(z − z0)n convergent in a disk

{|z − z0| < r} which contains σ(A) then

∞∑
n=0

an(A− z0I)n

is norm convergent and agrees with the r.h.s. of (3.2).
(3) If f and g are two analytic functions defined in a neighborhood of σ(A) then

f(A)g(A) = [fg](A).

Exercise 6. Prove (1) and (2).

Proof. To prove (3) we will use the following

Lemma 3.3 (Resolvent identity). Let z, w ∈ ρ(A). Then

R(z)−R(w) = (w − z)R(z)R(w).

Exercise 7. Prove the resolvent identity.
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Now let f, g be analytic in a neighborhood of σ(A):

f(A) =
1

2πi

∫
C
f(z)R(z)dz, g(A) =

1

2πi

∫
D
g(z)R(z)dz.

Without loss of generality, assume C lies inside D — so the winding number of D around
any point z ∈ C is one. Then

f(A)g(A) =
1

2πi

∫
C

∫
D
f(z)g(w)R(z)R(w)dwdz =

1

2πi

∫
C

∫
D

f(z)g(w)

w − z
[R(z)−R(w)] dwdz.

Let’s compute each term separately:

1

2πi

∫
C

∫
D

f(z)g(w)

w − z
R(z)dwdz =

1

2πi

∫
C
f(z)g(z)R(z)dz = [fg](A),

1

2πi

∫
C

∫
D

f(z)g(w)

w − z
R(w)dwdz =

1

2πi

∫
D

[∫
C

f(z)

w − z
dz

]
g(w)R(w)dw = 0.

�

The map A 7→ f(A) is called the functional calculus. Part (2) of the functional calculus
shows that f 7→ f(A) is an algebraic homomorphism of the algebra of functions analytic
in a neighborhood of σ(A) into the Banach algebra A. Next we will consider some of the
analytic properties of this homomorphism.





LECTURE 4

Spectral mapping theorem and Riesz Projections

Theorem 4.1. Let A be a Banach Algebra, A ∈ A, and f analytic in a neighborhood of
σ(A).

(1) (The spectral mapping theorem): σ(f(A)) = f(σ(A))
(2) If g is analytic in a neighborhood of σ(f(A)) then

g(f(A)) = [g ◦ f ](A).

Proof. To show (1) we need to show that ζI − f(A) is invertible if and only if ζ 6∈
f(σ(A)). If ζ 6∈ f(σ(A)) then h(z) = (ζ − f(z))−1 is analytic in a neighborhood of σ(A).
But then

h(A)(ζI − f(A)) = I

by the multiplicative property of the functional calculus. On the other hand, if ζ ∈ f(σ(A)),
say ζ = f(w) with w ∈ σ(A). Let

k(z) =
f(w)− f(z)

w − z
,

so k is analytic in a neighborhood of σ(A), and

k(A)(wI − A) = (wI − A)k(A) = ζI − f(A).

Suppose (ζI − f(A)) were invertible, then we would have

(ζI − f(A))−1k(A)(wI − A) = (wI − A)k(A)(ζI − f(A))−1 = I,

which would imply that w 6∈ σ(A), a contradiction.
To show (2), since σ(f(A)) = f(σ(A)) we have

g(f(A)) =
1

2πi

∮
D

(ζI − f(A))−1g(ζ)dζ

with D a suitable contour. But

(ζI − f(A))−1 =
1

2πi

∮
C
(zI − A)−1 1

ζ − f(z)
dz,

so

g(f(A)) =
1

(2πi)2

∮
D×C

(zI − A)−1 1

ζ − f(z)
g(ζ)dzdζ

=
1

2πi

∮
C
(zI − A)−1g(f(z))dz = [g ◦ f ](A). �

The functional calculus f 7→ f(A) is often known as the “Riesz functional calculus” to
distinguish it from the functional calculus we will develop later for self-adjoint operators,
which will allow the evaluation of f(A) for measurable functions.

4-1
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One of the key conclusions of the spectral mapping theorem is the association of projections
to each component of the spectrum of A.

Definition 4.1. A projection P in A is any element of A which satisfies (1) P 2 = P
and (2) P 6= 0.

Proposition 4.2. If P is a projection, then PAP = {PAP : A ∈ A} is a Banach
algebra with unit P . If P 6= I then σ(P ) = {0, 1}.

Proof. Since (PAP )(PBP ) = P (APB)P ,

‖PAPPBP‖ ≤ ‖PAP‖ ‖PBP‖ and P (PAP ) = (PAP )P = PAP,

it follows that PAP is a Banach algebra with unit P .
To see that σ(P ) = {0, 1}, first note that

P (I − P ) = (I − P )P = P − P = 0.

Thus neither P nor (I − P ) can be invertible. Since P, (I − P ) 6= 0, it follows that {0, 1} ⊂
σ(P ).

It remains to show that any ζ ∈ C \ {0, 1} is in the resolvent set. For this purpose,
consider the Laurent series for the resolvent

(ζI − P )−1 =
∑
n

ζ−n−1P n,

convergent for |ζ| > sp-rad(P ). Since P n = P , n ≥ 1, we may sum the series to get

R(ζ) := (ζI − P )−1 =
1

ζ
(I − P ) +

∑
n

ζ−n−1P =
1

ζ
(I − P ) +

1

ζ − 1
P, (4.1)

which is well defined for all ζ ∈ C \ {0, 1}.

Exercise 8. Check that the r.h.s. of (4.1) is equal to (ζI − P )−1 for ζ 6= 0, 1. �

Now suppose A ∈ A and
σ(A) = ∪Nj=1σj

with σj disjoint. Then we can define

Pj =
1

2πi

∮
Cj

(ζI − A)−1dζ

with Cj any contour that winds once around σj and zero times around σi, i 6= j.
Theorem 4.3.

(1) Pj are projections
(2) PjPi = 0 for i 6= j
(3)

∑
j Pj = I.

(4) The spectrum of PjAPj = APj = PjA, as an element of the algebra PjAPj, is

σPjAPj(PjAPj) = σj.

Remark. The spectrum of PjAPj in A is σj ∪ {0}.

Proof. Note that Pj = fj(A) with fj an analytic function that is 1 in a neighborhood of
σj and 0 in a neighborhood of σi for i 6= j. Thus (1), (2) and (3) follow from the functional
calculus. �
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The projections Pj are known as “Riesz projections.” For matrices, they give the pro-
jection onto generalized eigenspaces. To see this, let us compute an example. Consider the
matrix

A =

(
0 1
1 0

)
.

The spectrum of A is {−1,+1}. If we write down the resolvent

(ζI − A)−1 =
1

ζ2 − 1

(
ζ 1
1 ζ

)
,

then we may compute

P± =
1

2πi

∮
z=±1+eiθ

1

ζ2 − 1

(
ζ 1
1 ζ

)
dζ =

1

2

(
1 ±1
±1 1

)
.

Exercise 9. Verify that

P 2
± = I, AP± = P±A = ±P±.

More generally, the matrix may have non-trivial blocks in it’s Jordan form.

Exercise 10. Compute the resolvent and Riesz projections for1 2 3
0 1 2
0 0 2

 .

Exercise 11. Show that

f




λ 1 0 · · · 0

λ 1
...

. . . . . . 0
. . . 1

λ


︸ ︷︷ ︸

n×n


=



f(λ) f ′(λ) 1
2
f ′′(λ) · · · 1

(n−1)!
f (n−1)(λ)

f(λ) f ′(λ)
. . .

...
. . . . . . 1

2
f ′′(λ)

. . . f ′(λ)
f(λ)


In infinite dimensions the Riesz projections may not be related to generalized eigenvec-

tors. For instance the shift operator

S(a0, a1, · · · ) = (a0, a1, · · · )

on `2 has spectrum

σ(S) = {|z| ≤ 1}.
Thus S has only one Riesz projection — the identity map.

Exercise 12. S corresponds to the infinite matrix

S ∼

0 1
0 1

. . . . . .

 .
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Show that, if f is analytic in a neighborhood of {|z| ≤ 1} then f(S) corresponds to the
infinite matrix

S ∼


f(0) f ′(0) 1

2
f ′′(0) · · · 1

n!
f (n)(0) · · ·

f(0) f ′(0) 1
2
f ′′(0) · · · 1

n!
f (n)(0) · · ·

. . . . . . . . . . . .
. . . . . . . . . . . .

 .

In other words, if a = (a0, a1, a2, · · · ) then

[f(S)a]j = jth entry of f(S)a =
∞∑
n=0

1

n!
f (n)(0)aj+n.



LECTURE 5

Dependence of the spectrum on the algebra

Source: Some material in this lecture is taken from Chapter VII of John B. Conway, “A
course in functional analysis,” 2nd ed., Springer 1990.

Recall that we defined the Riesz projections

Pj =
1

2πi

∮
Cj

(ζI − A)−1dζ

for A ∈ A with spectrum that can be written as a disjoint union

σ(A) = ∪Nj=1σj.

I claimed that

(1) PjA = APj = PjAPj.
(2) σAj(PjAPj) = σj, where σAj denotes the spectrum in the Banach algebra Aj =

PjAPj.
To see (1) note that

(ζI − A)−1A = A(ζI − A)−1,

as one can see explicitly by adding and subtracting ζI from A. Or use the multiplicative
property of the functional calculus. This gives the first equality of (1). The second follows
since P 2

j = Pj.
To see (2), we have to show that (zI − PjAPj) is invertible in Aj if and only if z 6∈ σj.

To this end note that

PjAPj = PjA =
1

2πi

∫
Cj
ζ(ζI − A)−1dζ.

If z 6∈ σj then ζ 7→ (z − ζ)−1 is analytic in a neighborhood of σj and by the functional
caluclus[

1

2πi

∫
Cj

1

z − ζ
(ζI − A)−1dζ

]
PjAPj = PjAPj

[
1

2πi

∫
Cj

1

z − ζ
(ζI − A)−1dζ

]
= Pj,

so ζ 6∈ σAj(PjAPj). On the other hand if ζ ∈ σj and there were B such that (ζI −
PjAPj)PjBPj = PjBPj(ζI − PjAPj) = Pj then

B +
∑
i 6=j

1

2πi

∫
Ci

1

z − ζ
(ζI − A)−1dζ (5.1)

would be an inverse for ζI − A, which is a contradiction. (To see that (5.1) does give an
inverse for ζI − A recall that PiPj = 0 if i 6= j.)

This example exposes a couple of interesting facts about Banach algebras.

(1) If A′ ⊂ A and A′ has an identity I ′, it may happen that I ′ is not an identity for A
(2) The spectrum of A ∈ A′ depends on whether we consider it to be an element of A′

or A.

5-1
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In the case of the Riesz projections considered last time we have

Proposition 5.1. If A is a Banach algebra with identity I and if P 6= I is a projection
in A then for any A ∈ A′ = PAP

σA(A) = σA′(A) ∪ {0}.

Proof. If (ζI − A) is invertible in A then

P (ζI − A)−1P (ζP − A) = P (ζI − A)−1(ζI − A)P = P = · · · = (ζP − A)P (ζI − A)−1P,

so ζP −A is invertible in A′. Thus σA′(A) ⊂ σA(A). On the other hand if ζ 6= 0 and ζP −A
is invertible in A′, with inverse R′(ζ), then

R′(ζ) +
1

ζ
(I − P )

is an inverse for ζI − A. (Note that (I − P )A = 0 and R′(ζ) = R′(ζ)P = PR′(ζ).) Thus
σA ⊂ σA′(A) ∪ {0}. Finally, since

(I − P )A = 0

A cannot be invertible (in A) and so 0 ∈ σA(A). �

What if A′ ⊂ A but is not of the form A′ = PAP? In this case, the spectrum can change
more dramatically. This can happen even if A′ and A have a common identity. To see what
is going let us consider an example:

Let A′ = uniform closure of polynomials in z in C(T ) with T = {|z| = 1} and let
A = C(T ) (= uniform closure of polynomials in z and z.) Consider f(z) = z ∈ A′ ⊂ A.

Proposition 5.2. (1) σC(T )(z) = T.

(2) σA′(z) = D = {|ζ| ≤ 1}.

Proof. For (1), note that if ζ 6∈ T then (ζ − z)−1 is a continuous function on T . For
(2), first note that if |ζ| > 1 then

1

ζ − z
=

∞∑
n=0

zn
1

ζn+1

is absolutely convergent, so (ζ − z)−1 ∈ A′.
To prove that any |ζ| ≤ 1 is in the spectrum of z as an element of A′ let us note that if

f ∈ A′ then there is a sequence pn of polynomials converging uniformly to f . In particular,
pn is Cauchy in the uniform norm on T . By the maximum principle pn is a Cauchy sequence
in C(D). Thus pn → F uniformly on D, with F an analytic function such that F (z) = f(z)
for |z| = 1. Now if ζ ∈ C and there is f ∈ A′ such that (ζ − z)f(z) = 1 on T then
(ζ − z)F (z) = 1 on D. Since F is continuous, we must have |ζ| > 1. �

Remark. We have shown that A′ can be identified with the algebra of continuous func-
tions on D analytic in the interior.

This example is typical in that what can happen is that in the smaller algebra some
“holes” in the spectrum can be filled in. To make this precise, let us define

Definition 5.1. If K ⊂ C, let

‖f‖K = sup{|f(z)| : z ∈ K}.
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If K is compact, let K̂ denote the polynomially convex hull of K:

K̂ := {z ∈ C : |p(z)| ≤ ‖p‖K for every polynomial p} .

We say that K is polynomially covex if K̂ = K.

Proposition 5.3. If K is compact in C then C\K̂ is the unbounded component of C\K.
Thus K is polynomially convex if and only if C \K is connected.

Proof. Let U0, U1, . . . be the components of C \K, with U0 the unbounded component.
For n ≥ 1, Un is a bounded open set with ∂Un ⊂ K (why?). By the maximum principle

Un ⊂ K̂. Since K ⊂ K̂ we have

L := K ∪
∞⋃
n=1

Un ⊂ K̂.

On the other hand if ζ ∈ U0 then (ζ − z)−1 is analytic in a neighborhood of L. By
Runge’s Theorem there is a sequence of polynomials pn converging uniformly to (ζ − z)−1

on L. Let qn(z) = (z − ζ)pn(z). Then qn → 1 uniformly on L. However,

1− qn(ζ) = 1,

so for sufficiently large n
|1− qn(ζ)| > ‖1− qn‖K .

Thus ζ 6∈ K̂. �

Theorem 5.4. If A′ ⊂ A are Banach algebras with a common identity and A ∈ A′ then

(1) σA(A) ⊂ σA′(A)
(2) ∂σA′(A) ⊂ ∂σA(A)
(3) σ̂A(A) = σ̂A′(A)
(4) If U is a bounded component of C\σA(A), then either U ⊂ σA′(A) or U∩σA′(A) = ∅.
(5) If A′ = closure in A of polynomials in A, then σA′(A) = σ̂A(A).

Proof. Let I denote the identity in A and A′. If (ζI −A) is invertible in A′, then since
the identity is the same in A and A′, it is also invertible in A. (1) follows.

Suppose ζ ∈ ∂σA′(A). We must show that ζ ∈ σA(A). (It follows from (1) that then
ζ ∈ ∂σA(A).) Suppose on the contrary that there is R ∈ A such that

R(ζI − A) = (ζI − A)R = I.

Since ζ ∈ ∂σA′(A) there is ζn → ζ with ζn ∈ C \ σA′(A). Thus (ζnI − A)−1 ∈ A′. It follows
that

(ζnI − A)−1 → R in A,
but since A′ is a Banach space we then have R ∈ A′. This is contradicts the fact that
ζ ∈ σA′(A). (2) follows.

(3) follows from (1) and (2) and the maximum principle.
To prove (4), let G1 = U∩σA′(A) and G2 = U \σA′(A). So U = G1∪G2 and G1∩G2 = ∅.

Clearly G2 is open. Furthermore, since U ∩ σA(A) = ∅ and ∂σA′(A) ⊂ σA we conclude that
G1 = U ∩ intσA′(A) is also open. Since U is connected either G1 = ∅ or G2 = ∅.

Finally, let A′ = closure of polynomials in A. By (1) and (3) we have

σA ⊂ σA′(A) ⊂ σ̂A(A).
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On the other hand, if ζ 6∈ σA′(A) then (ζI − A)−1 ∈ A′. Thus there is a sequence pn of
polynomials such that

pn(A) → (ζI − A)−1.

Let qn(z) = (z − ζ)pn(z). So ‖qn(A)− 1‖ → 0. By the spectral mapping theorem

σA(qn(A)) = qn(σA(A)).

Thus for large enough n

1 > ‖1− qn(A)‖ ≥ sp-rad(1− qn(A)) = sup{|1− qn(w)| : w ∈ σA(A)} = ‖1− qn‖σA(A) .

Since |1− qn(ζ)| = 1 it follows that ζ 6∈ σ̂A(A). �



LECTURE 6

Commutative Banach Algebras

Reading: Chapter 18 in Lax We will now specialize to spectral theory in an algebra A with
a unit I and such that the multiplication is commutative:

AB = BA for all A,B ∈ A.
The theory we will develop here is due to I. M. Gelfand. Throughout this lecture all Banach
algebras will be commutative and have a unit.

Definition 6.1. A multiplicative functional p on a Banach algebraA is a homomorphism
of A into C.

So p : A → C is a linear functional and

p(AB) = p(A)p(B).

This definition is purely algebraic. In particular, it is not assumed that p is bounded.
However we have

Theorem 6.1. Every multiplicative functional p on a commutative Banach algebra is a
contraction:

|p(A)| ≤ ‖A‖ .

Proof. Since
p(A) = p(IA) = p(I)p(A) ∀A ∈ A

we have either p(A) = 0 for all A or p(I) = 1. The first case is trivial.
In the second case, if A is invertible then

p(A−1)p(A) = p(I) = 1,

and so

Lemma 6.2. If p 6= 0 is a multiplicative functional on a Banach algebra and A is invertible
then p(A) 6= 0.

Now suppose |p(A)| > ‖A‖ for some A. Let

B =
A

p(A)
.

Then
‖B‖ < 1.

Thus I −B is invertible, and

p(I −B) = p(I)− p(A)

p(A)
= 0,

which is a contradiction. �

6-1
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There is a lot of interplay between algebraic and analytic notions in the context of Banach
algebras.

Definition 6.2. A subset I of a commutative Banach algebra A is called an ideal if

(1) I is a linear subspace of A
(2) AI ⊂ I for any A ∈ A
(3) I 6= 0,A.

Again, this is a purely algebraic notion. The following is a standard algebraic fact:

Proposition 6.3. Let A and B be commutative algebras with units and q : A → B a
homomorphism. Suppose that q

(1) is not an isomorphism, and
(2) is not the zero map.

Then the
ker q = {A ∈ A : q(A) = 0}

is an ideal in A. Conversely any ideal in A is the kernel of a homorphism satisfying (1) and
(2)

Sketch of proof. It is easy to see that ker q is an ideal. Given an ideal I, to construct
the homorphism, we let B = A/I. That is

B = {equivalence classes for A ∼ B iff A−B ∈ I}.
Check that B is an algebra with addition or multiplication given by addition or multiplication
of any pair of representatives. Now let q : A → B be the map

q(A) = [A] = equivalence class containing A. �

An ideal can contain no invertible elements. Indeed if A is invertible and A were in I,
then A−1A = I would be in I which would imply AI = A ∈ I for all A, that is I = A. On
the other hand

Lemma 6.4. Every non-invertible element B of A belongs to an ideal.

Proof. If B = 0 it is in every ideal. (Ideals are, in particular, vector spaces.) If B 6= 0
then BA = {BA : A ∈ A} is an ideal and contains B.

Exercise 13. Show that BA is an ideal if B is not invertible.

�

Definition 6.3. A maximal ideal is an ideal that is not contained in a larger ideal.

The space of ideals in A can be partially ordered by inclusion. It is easy to see that the
union of an arbitrary collection of ideals is itself an ideal. Thus Zorn’s lemma gives

Lemma 6.5. Every ideal is contained in a maximal ideal. In particular, every non-
invertible element B ∈ A belongs to a maximal ideal.

Lemma 6.6. Let M be a maximal ideal in A. Every non-zero element of A/M is in-
vertible.

Remark. That is, A/M is a division algebra.
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Proof. Suppose [B] ∈ A/M is not invertible. Then [B]A/M = (BA) /M is an ideal.
Let

I = {A ∈ A : [A] ∈ [B]A/M} ,
that is

I = {A ∈ A : A = BK +M for some K ∈ A and M ∈M} .
Exercise 14. Show that I is an ideal.

Since I is an ideal and clearly I ⊃M, we must have M = I. Since B = BI + 0 ∈ I, it
follows that B ∈M. That is, [B] = 0. �

So far we have done no analysis on ideals. To proceed we need an analytic result:

Theorem 6.7 (Mazur). Let A be a Banach algebra with unit that is a division algebra.
Then A is isomorphic to C.

Proof. Let B ∈ A. The spectrum of B is non-empty. Thus there is ζ ∈ C such that
ζI −B is non-invertible. Since A is a division algebra, ζI = B. Thus every element of A is
a multiple of the identity. The map B → ζ is the isomorphism onto C. �

We would like to conclude from Mazur’s theorem that A/M∼= C for any maximal ideal
M. Indeed, we have seen that A/M is a division algebra. However, we are not done as we
have not shown it is a Banach algebra. (There are division algebras not isomorphic to C.
For example, the algebra of rational functions on C.)

To show that A/M is a Banach algebra, we must show in particular that it is a Banach
space. That this is true follows because

Lemma 6.8. Let I be an ideal in a commutative Banach algebra. Then the closure I of
I is an ideal. In particular, a maximal ideal M is closed.

Exercise 15. Prove this lemma.

Thus A/M is a quotient of Banach spaces. It follows that it is a Banach space in the
following norm:

‖[B]‖ = inf
M∈M

‖B +M‖ .

(See Chapter 5.)

Lemma 6.9. Let I be a closed ideal in a commutative Banach algebra A. Then A/I is
a Banach algebra.

Exercise 16. Prove this lemma

Thus, given a maximal ideal M, the quotient A/M is a Banach division algebra and,
thus, naturally isomorphic to C by Mazur’s theorem. In particular, the quotient map

p(B) = [B]

is a multiplicative functional. In fact,

Theorem 6.10. Let A be a commutative Banach algebra. There is a one-to-one corre-
spondence between non-zero multiplicative functionals and maximal ideals given by

M 7→ pM(B) = [B] , pM : A → A/M∼= C,
and

p 7→ ker p.
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Proof. We have already seen that the quotient map associated to any maximal ideal
is a multiplicative functional, so it remains to show that ker p is a maximal ideal for any
multiplicative functional. This is a general algebraic fact. Since p is a non-zero linear
functional, ker p is a subspace of co-dimension 1. Thus any subspace V ⊃ ker p satisfies
V = A or V = ker p. Since any ideal M ⊃ ker p is a subspace with M 6= A, we conclude
that M = ker p is a maximal ideal. �

Corollary 6.11. An element B of a commutative Banach algebra with unit is invertible
if and only if

p(B) 6= 0

for all multiplicative functionals.

Proof. We have already seen that B invertible =⇒ p(B) 6= 0 for all m.f.’s.
Conversely, if B is singular it is contained in a maximal idealM. Then pM(B) = 0. �



LECTURE 7

Spectral theory in commutative Banach Algebras

Theorem 7.1. Let A be a commutative Banach algebra and let B ∈ A. Then

σ(B) = {p(B) : p is a multiplicative linear functional} .

Proof. ζ ∈ σ(B) if and only if ζI − B is not invertible. Last time, we saw that this
happens if and only if

p(ζI −B) = 0

for some multiplicative functional p. That is if and only if

ζ = p(B). �.

The set J = {maximal ideals in A} is called the spectrum of the algebra A. Using the
correspondenceM∼ pM between maximal ideals and multiplicative functionals established
last time, we have a natural correspondence between A and an algebra of functions on J ,
namely

A 7→ fA(M) = pM(A), (?)

where pM is the multiplicative functional with kernel M. This map is called the Gelfand
representation of A.

Theorem 7.2.

(1) The Gelfand representation is a homomorphism of A into the algebra of bounded
functions on J .

(2) |fA(M)| ≤ ‖A‖ for all A ∈ A and M∈ J .
(3) The spectrum of A is the range of fA.
(4) The identity I is represented by fI = 1.
(5) The functions fA separate points of J : given M and M′ distinct there is A ∈ A

such that

fA(M) 6= fA(M′).

Proof.

Exercise 17. Verify (1), (2), (3), and (4).
To see (5) note that given A ∈M \M′ we have

fA(M) = 0 and fA(M′) 6= 0.

�

Definition 7.1. The natural topology on J is the weakest topology in which all the
functions fA, A ∈M, are continuous. It is called the Gelfand topology.

Theorem 7.3. J is a compact Hausdorff space in the Gelfand topology.

7-1
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Proof. This is a standard proof based on Tychonoff’s theorem. Let

P =
∏
A∈A

D‖A‖,

with D‖A‖ the closed disk of radius ‖A‖ in C. By Tychonoff’s theorem P is compact in the
product topology. By part (2) of the first theorem

fA(M) ∈ D‖A‖,
so

Φ(M)A = fA(M)

defines a map from J → P . By (5) this map is injective.

Exercise 18. Check that the Gelfand topology is the same as the topology induced on
J by this embedding.

Since P is compact, it suffices to show that Φ(J ) is closed.

Exercise 19. Show that Φ(J ) is closed. Namely, show that any point t = t· in the
closure of Φ(J ) is a homomorphism

tA+cB = tA + ctB and tAB = tAtB.

The Hausdorff property for J follows since fA separate points. �

The Gelfand representation need not be injective. For example

A =

{(
z w
0 z

)
: z, w ∈ C

}
is a commutative Banach algebra, with identity. (Use the matrix norm, or∥∥∥∥(z w

0 z

)∥∥∥∥ = |z|+ |w|,

which is also sub-multiplicative.) It has a unique maximal ideal namely

M =

{(
0 w
0 0

)
: w ∈ C

}
.

The Gelfand homomorphism is the map(
z w
0 z

)
→ z, A → C.

In general, the kernel of the Gelfand representation is

R =
⋂
M∈J

M,

which is called the radical of A.

Proposition 7.4. A ∈ R if and only if σ(A) = {0}.

Proof. This follows from the identity

σ(A) = {pM(A) : M∈ J}. �

In particular, R contains all the nilpotent elements (if there are any). More generally, if

‖An‖
1
n → 0, so sp-rad(A) = 0, then A ∈ R.
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Proposition 7.5. R is closed, and is an ideal if R 6= 0.

Exercise 20. Prove this.

The radical is essentially the barrier to representing A as an algebra of functions. Since
R is closed, we may consider the quotient Banach algebra A/R, which has trivial radical.
The Gelfand representation shows that:

Theorem 7.6. If A is a commutative Banach Algebra, then there is a compact Hausdorff
space Ω and continuous (bounded) injective homomorphism of A/R into C(Ω).

Thus a commutative Banach Algebra with trivial radical may be thought of as a sub-
algebra of the continuous functions on a compact Hausdorff space, and in fact the algebra
determines the space.





LECTURE 8

C∗ algebras

The algebra of functions on a compact Hausdorff space has an additional structure —
complex conjugation — which is not present in commutative Banach algebras. What happens
if we put it there?

More generally, we can define

Definition 8.1. A ∗operation on a Banach algebra A is a map A 7→ A∗ from A → A
satisfying

(1) (A∗)∗ = A
(2) (AB)∗ = B∗A∗

(3) (A+B)∗ = A∗ +B∗

(4) (wA)∗ = wA∗.

A C∗ algebra A is a Banach algebra together with a ∗operation such that

‖A‖2 = ‖A∗A‖ .
The prime example of a C∗ algebra is the algebra of bounded operators on a Hilbert

space. In fact, although we will not show this, any C∗ algebra is isometrically isomorphic to
a sub algebra of the bounded operators on a Hilbert space. A second example is C0(Ω) with
Ω a locally compact topological space. This example is commutative. If Ω is compact then
C0(Ω) = C(Ω) has an identity. If Ω is locally compact then C0(Ω) does not have an identity.

Proposition 8.1. If A is a C∗ algebra, then ‖A‖ = ‖A∗‖.

Proof. Note that ‖A‖2 = ‖A∗A‖ ≤ ‖A∗‖ ‖A‖, so ‖A‖ ≤ ‖A∗‖. �

Definition 8.2. An element of a C∗ algebra is self-adjoint if A∗ = A, is anti-self-adjoint
if A∗ = −A and is unitary if A∗A = I.

Theorem 8.2. If p is a multiplicative functional on a C∗ algebra then

(1) p(A) ∈ R if A is self-adjoint.

(2) p(A∗) = p(A).
(3) p(A∗A) ≥ 0.
(4) |p(U)| = 1 if U is unitary.

Proof. We already have ‖p‖ ≤ 1 (the proof given above goes through for general Banach
algebras). Let A is self adjoint and

p(A) = a+ ib.

With Tt = A+ itI, we have

a2 + (b+ t)2 = |p(Tt)|2 ≤ ‖Tt‖2 .

On the other hand, T ∗t = A− itI so

T ∗t Tt = A2 + t2I,

8-1
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and
‖Tt‖2 ≤ ‖A‖2 + t2.

Thus
a2 + (b+ t)2 ≤ ‖A‖2 + t2.

This inequality can hold for all t if and only if b = 0. So p(A) = a ∈ R, and (1) follows.
For general A we may write

A =
1

2
(A+ A∗) + i

1

2
(A− A∗),

and

A∗ =
1

2
(A+ A∗)− i

1

2
(A− A∗),

so (2) follows from (1). (3) and (4) follow from (2) since p(A∗A) = p(A∗)p(A). �

Corollary 8.3. If A is a C∗ algebra then

(1) If A is self adjoint σ(A) ⊂ R.
(2) If A is anti-self-adjoint σ(A) ⊂ iR
(3) If A is unitary σ(A) ⊂ {|z| = 1}.

Proof. Use the Gelfand theory

σ(A) = {p(A) : p is a multiplicative functional}.
�

Theorem 8.4. Let A ⊂ B be C∗ algebras with the same identity and norm. If A ∈ A
then σA(A) = σB(A).

Proof. First let A be self-adjoint and let C = the algebra generated by A. So C is a
commutative C∗ algebra and C ⊂ A ⊂ B. Since C is commutative, we have σC(A) ⊂ R.
Thus

σB(A) ⊂ σA(A) ⊂ σC(A) = ∂σC(A) ⊂ ∂σA(A) ⊂ ∂σB(A).

It follows that σB(A) = σA(A) = σC(A).
To prove the general statement, it suffices to show that if A is invertible in B it is invertible

in A. So suppose we have B ∈ B such that BA = AB = I. It follows that

(A ∗ A)(BB∗) = (BB∗)(A∗A) = I.

Since A∗A is self-adjoint, the first part of the proof implies that A∗A is invertible in A. Thus
BB∗ ∈ A. Thus

B = B(B∗A∗) = (BB∗)A∗ ∈ A. �

Thus in any C∗ algebra we can use the Gelfand theory to compute the spectrum, be-
cause the spectrum of an element A is the same as its spectrum in the smallest C∗ algebra
containing it

C∗(A) = algebra generated by A and A∗.

Definition 8.3. An element A in a C∗ algebra is called normal if AA∗ = A∗A.

Theorem 8.5. For normal A in a C∗ algebra,

sp-rad(A) = ‖A‖ . (∗)
In particular, in a commutative C∗ algebra (∗) holds for every A.
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Proof. For self-adjoint A we have∥∥A2
∥∥ = ‖A‖2 .

It follows that ∥∥∥A2k
∥∥∥ = ‖A‖2k .

Thus

sp-rad(A) = lim
n→∞

‖An‖
1
n = lim

k→∞

∥∥∥A2k
∥∥∥2−k

= ‖A‖ .

If A is normal, then C∗(A,A∗) is commutative, so by the Gelfand theory we have

‖A‖2 = ‖A∗A‖ = sp-rad(A∗A) = sup
p
p(A∗A) = sup

p
|p(A)|2 = sp-rad(A)2,

where the sup is over multiplicative functionals on C∗(A,A∗). �

Corollary 8.6. If A is a commutative C∗ algebra with unit then there is a compact
Hausdorff space Ω and an isometric isomorphism Φ : A → C(Ω).

Proof. Let Ω be the maximal ideal space of A in the Gelfand topology, and let Φ : A →
C(Ω) be the Gelfand representation. By the previous theorem, sp-rad(A) = 0 =⇒ A = 0
so the radical of A is {0}. Thus the Gelfand representation is injective. Also,

‖A‖2 = sup
M
|pM(A)|2 = sup

M
|Φ(A)(M)|2 ,

so the Gelfand representation is an isometry.
It remains to show that the range of Φ is all of C(Ω). This follows from Stone-Weirstrass

since Φ(A) is closed, separates points, and is closed under conjugation. �





Part 2

Spectral Theory for operators on a Hilbert
space





LECTURE 9

Self-adjoint operators

Reading: Chapter 31
Recall that an operator A ∈ L(H), H a complex Hilbert space, is self-adjoint (or Her-

mitian or symmetric) if

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H.
We will assume unless mentioned otherwise that H is separable. So H is isomorphic either
to Cn or `2.

Last term we saw that if A is self-adjoint and compact then there is a orthonormal basis
of eigenvectors for A:

Aen = λnen, 〈en, em〉 = δn,m, span{en : n = 1, . . .} = H.

Thus given x ∈ H we have

x =
∑
n

anen, Ax =
∑
n

anλnen,

with an = 〈xn, en〉 .
An expansion into eigenvectors does not exist for an arbitrary self-adjoint operator. For

instance multiplication by x in L2(−1, 1),

Mf(x) = xf(x)

has no eigenvectors in L2. In this case there are eigenvectors in the sense of distributions:

Mδ(x− λ) = λ, λ ∈ (−1, 1).

In some sense we have

f(x) =

∫ 1

−1

f(λ)δ(x− λ)dλ, Mf(x) =

∫ 1

−1

f(λ)λδ(x− λ)dλ,

analogous to the above expression.
Thus for a general self-adjoint operator the eigenvectors may be quite singular. A slightly

better object to work with are projections onto the spaces spanned by eigenvectors with
eigenvalues in some set S. In the case of Mf(x) = xf(x), we have

EM(S)f(x) = χS(x)f(x),

which is a non-zero projection if S is a set of positive Lebesgue measure in L2(−1, 1).
Let us rewrite, the expressions for the compact operator A in this form. Let E({λn})

for the projection onto the (finite dimensional) subspace of eigenvectors with eigenvalue λn.
For a general set S ⊂ R, let

E(S) =
∑
λn∈S

E({λn}).

Proposition 9.1.

9-1
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(1) E(S) is a projection for each S ⊂ R.
(2) E(S)E(S ′) = E(S ∩S ′). In particular, if S ∩S ′ = ∅ then the ranE(S) ⊥ ranE(S ′).
(3) If S1, . . . , Sn are disjoint then

E(S1 ∪ · · · ∪ Sn) = E(S1) + · · ·E(Sn).

(4) If Sj, j = 1, . . . ,∞, are disjoint then

E(∪jSj)x =
∞∑
j=1

E(Sj)x

for each x ∈ H.
(5) The same properties hold for EM(S) provided we restrict our attention to Lebesgue

measurable sets.

Exercise 21. Prove this.

The maps S 7→ E(S), EM(S) are projection valued measures. Note that

A =

∫
λdE((−∞, λ]) M =

∫
λdEM((−∞, λ]),

with the integrals understood as Stieltje’s integrals in the strong operator topology. That is,
for every x ∈ H,

Ax = lim
n→∞

n∑
j=1

λ
(n)
j E(−λ(n)

j−1, λ
(n)
j )x,

with λ
(n)
j a partition of the interval [−‖A‖ , ‖A‖], say, with mesh size → 0 as n→∞.

Definition 9.1. A projection valued measure over H is a map E : Σ → L(H) defined
on a sigma algebra of sets on some measurable space with the following properties.

(1) E(S) is an orthogonal projection for every S.
(2) (finite additivity) E(S1) + E(S2) + · · ·E(Sn) = E(S1 ∪ · · ·Sn) if Sj are disoint.
(3) (strong countable additivity) If Sj, j = 1, . . . ,∞, are disjoint then

E(∪jSj)x =
∞∑
j=1

E(Sj)x

for each x ∈ H.

Exercise 22. Derive E(S)E(S ′) = E(S ∩ S ′) from (1) and (2).

Associated to any projection valued measure on R, E(S), with compact support (E(R \
[−r, r]) = 0 for some r) there is a bounded self-adjoint operator

A =

∫
λdE((−∞, λ]).

Our ultimate goal is to show that the converse is true. This is the “spectral theorem.” (If
E does not have compact support, there is still a self-adjoint operator, but it is unbounded.
We will get to this.)

That is where we are headed, but it will take a little while.

Theorem 9.2. The spectrum of a bounded, self-adjoint operator M on a Hilbert space is
a compact subset of the real line and sp-rad(M) = ‖M‖.
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Proof. This follows from the results on C∗ algebras. �

Theorem 9.3. The spectrum σ(M) of a bounded, self adjoint operator M lies in the
closed interval [a, b], where

a = inf
‖x‖=1

〈x,Mx〉 , and b = sup
‖x‖=1

〈x,Mx〉 ,

and a, b ∈ σ(M).

Proof. If λ < a then

(b− λ) ‖x‖2 ≥ 〈x, (M − λI)x〉 ≥ (a− λ) ‖x‖2 .

It follows that 〈x, (M − λI)y〉 = 〈x, y〉λ is an inner product on H, which gives rise to a norm
equivalent to ‖·‖. By the Riesz theorem, for any y ∈ H the linear functional `(x) = 〈x, y〉
can be represented

〈x, y〉 = 〈x, z〉λ = 〈x, (M − λI)z〉
for some z. Clearly, the map y 7→ z is inverse to z 7→ (M − λI)z. Since

‖z‖2 = 〈z, z〉 ≤ 1

a− λ
〈z, z〉λ =

1

a− λ
〈z, y〉 ≤ ‖z‖ ‖y‖

we find that

‖z‖ ≤ 1

a− λ
‖y‖ ,

so the inverse is a bounded map. Thus λ is in the resolvent set of M . A similar argument,
with some minus signs, works for b. Thus σ(M) ⊂ [a, b].

Since σ(M) ⊂ [a, b], and | 〈x,Mx〉 | ≤ ‖M‖ ‖x‖,
sp-rad(M) ≤ max |a|, |b| ≤ ‖M‖ .

Since sp-rad(M) = ‖M‖ we see that the larger of a and b in magnitude lies in the spectrum
of M . Applying this to M + cI with c = −a and c = −b we conclude that

b− a ∈ σ(M − aI) = σ(M)− a =⇒ b ∈ σ(M),

and
a− b ∈ σ(M − bI) =⇒ a ∈ σ(M). �





LECTURE 10

Functional calculus and polar decomposition

The Gelfand representation gives an isometric isomorphism from C∗(A) → C(σ(A)),
with A a self-adjoint operator. Let us see this in a direct way.

If q is a polynomial, q(λ) = anλ
n + · · · a0, then we have

q(A) = anA
n + · · · a0I.

By the spectral mapping theorem

σ(q(A)) = q(σ(A)).

If the coefficients of q are real then q(A) is self-adjoint and we conclude from Theorem 2 of
the last lecture that

‖q(A)‖ = sup
λ∈σ(A)

|q(λ)| . (?)

By the Weirstrass theorem, for any f ∈ C(σ(A)) is real valued we can find a sequence of
polynomials qn with real coefficients such that

sup
λ∈σ(A)

|f(λ)− qn(λ)| .

It follows from (?) that qn(A) is a Cauchy sequence in L(H). Thus qn(A) has a limit. We
call this limit f(A).

Exercise 23. Show that the value of f(A) does not depend on the approximating se-
quence of polynomials, and that f(A) is self-adjoint. (Recall that f is real valued.)

The map f 7→ f(A) is called the continuous functional calculus for the self-adjoint opera-
tor A. So far we have defined it only for real valued functions, however it extends to complex
valued functions applying the real functional calculus to the real and imaginary parts. Thus
we have

Theorem 10.1. Let A ∈ L(H) be self-adjoint. There is a unique isometric algebra
homomorphism A 7→ f(A) from C(σ(A)) → L(H) such that 1 7→ I and x 7→ A. This map
satisfies

(1) ‖f(A)‖ = supλ∈σ(A) |f(λ)|
(2) σ(f(A)) = f(σ(A))
(3) f(A) is normal for all f ∈ C(σ(A)) and self-adjoint if and only if f is real valued.

One consequence of the functional calculus is the polar decomposition for arbitrary op-
erators. Recall that the polar decomposition of a matrix M is the factorization

M = T |M |,

where T is a partial isometry and |M | is a non-negative definite matrix.

10-1
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Definition 10.1. We say that an operator A ∈ L(H) is non-negative if

〈Au, u〉 ≥ 0 for all u ∈ H.

Theorem 10.2. An operator A is non-negative iff A is self-adjoint and σ(A) ⊂ [0,∞).

Proof. If A is non-negative then, in particular 〈Au, u〉 is real valued for each u and so

〈Au, u〉 = 〈Au, u〉 = 〈u,Au〉 . It follows that

4 〈Av, u〉
= 〈A(v + u), v + u〉 − 〈A(v − u), v − u〉+ i [〈A(v + iu), (v + iu)〉 − 〈A(v − iu), (v − iu)〉]
= 〈v + u,A(v + u)〉 − 〈v − u,A(v − u)〉+ i [〈v + iu,A(v + iu)〉 − 〈(v − iu), A(v − iu)〉]

= 4 〈v,Au〉 ,
so A is self-adjoint. We saw last time that if A self-adjoint implies

inf σ(A) = inf
‖x‖=1

〈Ax, x〉 .

Thus inf σ(A) ≥ 0.

On the other hand if A is self-adjoint and σ(A) ⊂ [0,∞) then the function f(λ) =
√
λ

is in C(σ(A)). Hence
√
A, defined by the functional calculus, is self-adjoint and satisfies

(
√
A)2 = A. Thus

〈Au, u〉 =
〈√

A
√
Au, u

〉
=
〈√

Au,
√
Au
〉

=
∥∥∥√Au∥∥∥2

≥ 0. �

In the process we have shown

Corollary 10.3. Every positive self-adjoint operator has a positive self-adjoint square
root.

and

Theorem 10.4. An operator A ∈ L(H) is self-adjoint if and only if 〈Au, u〉 ∈ R for all
u ∈ H.

As a consequence of the existence of square roots, we have

Theorem 10.5 (Polar decomposition). Every operator A ∈ L(H) can be factored as

A = T |A| where T is a partial isometry and |A| =
√
A†A is non-negative. The polar

decomposition has the following properties

(1) ker |A| = kerA
(2) T is an isometry from ran |A| onto ranA.
(3) T is not unique, but can be taken to be 0 on (ran |A|)⊥ = kerA.

Proof. A†A is non-negative since〈
A†Au, u

〉
= 〈Au,Au〉 ≥ 0.

Thus |A| is well defined. Since

‖Au‖2 = 〈Au,Au〉 =
〈
A†Au, u

〉
=
〈
|A|2u, u

〉
= 〈|A|u, |A|u〉 = ‖|A|u‖2 ,

we see that Au = 0 if and only if |A|u = 0. Thus ker |A| = kerA. Furthermore, the map
T : ran |A| → ranA defined by

T |A|u = Au



10. FUNCTIONAL CALCULUS AND POLAR DECOMPOSITION 10-3

is well defined, since if |A|u = |A|v then u− v ∈ kerA so Au = Av. Clearly this map is an
isometry. Extending T to be 0 on (ran |A|)⊥, the map is a partial isometry. Finally

(ran |A|)⊥ = ker |A| = kerA,

since for arbitrary B we have (ranB)⊥ = kerB†. �





LECTURE 11

Spectral resolution

Given a self-adjoint operator A on a Hilbert space, the functional calculus f 7→ f(A) is
a bounded linear map from C(σ(A))→ L(H). As such, the maps

`x,y(f) = 〈f(A)x, y〉 ,

defined for every pair x, y ∈ H, are bounded linear functionals. According to the Riesz
representation theorem, then, to each pair x, y ∈ H there corresponds a complex regular
Borel measure on σ(A) such that

〈f(A)x, y〉 =

∫
σ(A)

f(λ)dmx,y(λ).

Theorem 11.1.

(1) mx,y is sesquilinear in x, y (linear in x and conjugate linear in y).
(2) my,x = mx,y.
(3) ‖my,x‖ ≤ ‖x‖ ‖y‖.
(4) The measures mx,x are non-negative.

Remark. ‖mx,y‖ denotes the total variation norm of mx,y:

‖mx,y‖ = sup
f∈C(σ(A)) : |f(λ)|≤1

∣∣∣∣∫
σ(A)

f(λ)dmx,y(λ)

∣∣∣∣ .
Proof. (1), (2), and (3) are left as exercises. To prove (4) note that if f(λ) ≥ 0 on

σ(A), then
√
f ∈ C(σ(A)), so

〈f(A)x, x〉 =
〈√

f(A)
√
f(A)x, x

〉
=
〈√

f(A)x,
√
f(A)x

〉
≥ 0.

Thus ∫
σ(A)

f(λ)dmx,x(λ) ≥ 0

if f ≥ 0. It follows from the Riesz theorem that mx,x is a non-negative measure. �

Thus for every Borel set S ⊂ σ(M) we have a quadratic form

QS(x, y) = mx,y(S),

which is bounded (|QS(x, y)| ≤ ‖x‖ ‖y‖), sesquilinear and skew-symmetric under interchange
of x and y (QS(x, y) = |QS(y, x)|).

Theorem 11.2. Associated to any function B(x, y) on H×H which is bounded, sesquilin-
ear and skew-symmetric, there is a bounded self-adjoint operator M such that

B(x, y) = 〈Mx, y〉 .
11-1
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Proof. Fix y and consider B(x, y) as a function of x. This a bounded linear functional
on H, so by the Riesz-Frechet theorem there is w ∈ H such that

〈x,w〉 = B(x, y).

Let My = w. Since ‖w‖ ≤ c ‖y‖, so M is bounded. Self-adjointness of M follows form the
skew-symmetry:

〈x,My〉 = B(x, y) = B(y, x) = 〈y,Mx〉 = 〈Mx, y〉 . �

Thus to each Borel subset S ⊂ σ(A) is associated a bounded self-adjoint operator E(S)
so that

mx,y(S) = 〈E(s)x, y〉 .
Theorem 11.3.

(1) E(∅) = 0 and E(σ(A)) = I.
(2) If S ∩ T = ∅ then E(S ∪ T ) = E(S) + E(T ).
(3) E(S ∩ T ) = E(S)E(T )
(4) Each E(S) is an orthogonal projection, and ranE(S) ⊥ ranE(T ) if S, T are disjoint.
(5) [E(S), E(T )] = 0 and [E(S), A] = 0 for all S, T .
(6) E(S) is countably additive in the strong operator topology.

Remark. So E(S) is a projection valued measure as defined in Lecture 9.

Proof. Clearly mx,y(∅) = 0 for all x, y, so E(∅) = 0. Likewise

mx,y(σ(A)) =

∫
σ(A)

dmx,y(λ) = 〈Ix, y〉 = δx,y,

so E(σ(A)) = I. Part (2) follows from the additivity of the measures mx,y.
Note that (3) is equivalent to

mx,y(S ∩ T ) = mE(T )x,y(S) ∀x, y ∈ H, S, T ⊂ σ(A).

This in turn is equivalent to∫
T

f(λ)dmx,y(λ) = 〈f(A)E(T )x, y〉 ∀x, y ∈ H, f ∈ C(σ(A)), T ⊂ σ(A),

which is equivalent to∫
σ(A)

g(λ)f(λ)dmx,y(λ) = 〈f(A)g(A)x, y〉 ∀x, y ∈ H, f, g ∈ C(σ(A)),

which holds. Since E(S) is self-adjoint and E(S)2 = E(S), we see that E(S) is an orthogonal
projection. Since E(S)E(T ) = 0 if S ∩ T = ∅, we conclude that ranE(S) ⊥ ranE(T ). The
first part of (4) follows from (3).

Exercise 24. Show that [E(S), A] = 0.

Exercise 25. Show that E(S) is countably additive in the strong operator topology.

�

Thus,
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Theorem 11.4. To each self-adjoint operator A, there corresponds a unique projection
valued measure E on σ(A) such that

f(A) =

∫
σ(A)

f(λ)dE,

for all f ∈ C(σ(A)), with the integral on the r.h.s. a norm convergent Riemann-Stieltjes
integral.

Proof. We have already constructed the P.V.M. The uniqueness follows form the unique-
ness in the Riesz theorem. If I1, . . . , In are subsets of σ(A) with ∪jIj = σ(A) and Ij pairwise
disjoint then ∥∥∥∥∥∑

j

ajE(Ij)

∥∥∥∥∥ ≤ max
j
|aj|

orthogonality of the ranges of E(Ij). It follows that, for continuous f , the oscillation of f
on the partition I1, . . . , In

Osc(f, {Ij}) =

∥∥∥∥∥∑
j

sup
x,y∈Ij

|f(x)− f(y)|E(Ij)

∥∥∥∥∥
converges to zero as the mesh

∆ = max
j

diam(Ij)→ 0.

In the standard way, one concludes the existence of the integral. �

In particular, we have

I =

∫
σ(A)

dE , A =

∫
σ(A)

λdE.

One can refine the spectral resolution a bit further. Every Borel measure on µ on the
line R can be written as a sum of three part:

µ = µ(p) + µ(sc) + µ(ac),

where

(1) µ(p) is the point measure: µ(p)(S) =
∑

x∈S µ({x}).
(2) µ(ac) is the absolutely continuous measure: dµ(ac)(λ) = dµ

dλ
dλ.

(3) µ(sc) is everything else, and is singular continuous — it has no atoms (so F (λ) =
µ(sc)(−∞, λ) is a continuous function) but is supported on a set of measure 0 (so
F ′(λ) = 0 almost everywhere).

Applying this decomposition to the measures mx,y we obtain three distinct projection valued
measures E(p), E(sc), and E(ac). The measures are orthogonal to one another, that is

H = H(p) ⊕H(sc) ⊕H(ac) H(]) = ranE(])(σ(A)).

Exercise 26. Show that H(p) = closed linear span of the eigenvectors of A and that
E(p)(S) =

∑
λ∈S E({λ}), where the sum runs over the eigenvectors of A and E({λ}) is the

projection onto the corresponding eigenspace.





LECTURE 12

Representation of a self-adjoint operator as a multiplication
operator

Let A ∈ L(H) be self-adjoint and let x ∈ H. Consider the subspace

H◦x = {f(H)x : f ∈ C(σ(A))}.
In general H◦x is not closed. Let Hx denote its closure. So Hx is everything that can be
approximated in terms of polynomials in A times x. It is referred to as the cyclic subspace
for A containing x.

Proposition 12.1. Hx is an invariant subspace for A.

Proof. Let y ∈ Hx. So there are fn ∈ C(σ(A)) such that fn(A)y → x. Since A is
continuous Afn(A)y → Ax. But Afn(A) = gn(A) with gn(λ) = λfn(λ). �

Theorem 12.2. The map Txf = f(A)x extends from C(σ(A)) to an isometry from
L2(σ(A);mx,x)→ Hx, and

ATx = TxMλ,

where M is multiplication by the independent variable on L2(mx,x):

Mf(λ) = λf(λ).

That is, if we restrict A to a cyclic subspace it can be represented as multiplication by λ on
L2(dmx,x(λ)).

Proof. mx,x is a Borel measure on σ(A). It follows that C(σ(A)) is dense in L2(mx,x).
Consider the L2 norm of a continuous function f :∫

σ(A)

|f(λ)|2dmx,x(λ) =
〈
f(A)†f(A)x, x

〉
= 〈f(A)x, f(A)x〉 = ‖f(A)x‖2 .

So the map Tx is an isometry on a dense subset of L2. It follows that Tx can be extended
uniquely to all of L2 as an isometry.

Now let f ∈ C(σ(A)). Then Mf ∈ C(σ(A)). Thus

TxMf = (Mf)(A)x = Af(A)x.

Since this holds on a dense subset, it extends to L2. �

What does this say for matrices? For a self-adjoint matrix, the spectrum is a finite
set of points in R. Thus C(σ(A)) ∼ Cn, with n the number of points in the spectrum.
The spectral measure mx,x is an assignment of a non-negative weight to each point of the
spectrum. The map Tx can be understood as a change of basis on Hx which diagonalizes A.
If some eigenvalues are degenerate then we see by simple dimension counting that Hx is not
all of H. Likewise Hx could be a proper subspace just because we choose x in a non-generic
way. (What happens if x is an eigenvector?) Thus to obtain the full diagonalization of A we
need to repeat the procedure. The same is true for self-adjoint operators.

12-1
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Theorem 12.3 (Spectral Theorem). Let A ∈ L(H) be self-adjoint. Then there is a finite
or countable family of mutually orthogonal closed subspaces {Hj : j = 1, . . . , N} and a
finite or countable family of Borel probability measures {µj : j = 1, . . . , N} (N < ∞ or
N =∞) such that

(1) Hj is invariant for A for j = 1, . . . , N ,
(2) There is an isometry Tj : L2(µj)→ Hj such that

ATj = TjMj,

with Mjf(λ) = λf(λ).

Corollary 12.4. Let A ∈ L(H) be self-adjoint. Then there is a measure space Ω, µ and
an isometry T : L2(µ)→ H such that

AT = TMΦ,

with
MΦf(ω) = Φ(ω)f(ω),

where Φ is a real valued function in L∞(µ).

Proof of Corollary. Let µj be as in the Theorem. Clearly µj are all supported in
σ(A). Let Ω = σ(A)× N with the measure

µ(S) =
∑
j

µj(πj(S)),

where
πj(S) = {λ : (λ, j) ∈ S} .

Now let
Tf =

∑
j

TjΠjf,

where
Πjf(λ) = f(λ, j).

Note that Πj : L2(µ)→ L2(µj) is a bounded linear map, and

‖f‖2
L2(µ) =

∑
j

‖Πjf‖2
L2(µj)

.

Since ranTj ⊥ ranTk, it follows that T is an isometry. Also

ATf =
∑
j

ATjΠjf =
∑
j

TjMjΠjf,

which shows that AT = TMΦ with

Φ(λ, j) = λ. �

Proof of Theorem. Zornify....
�



LECTURE 13

Spectrum, Spectral Measures and Spectral Multiplicities

Reading: §31.5, but there are some minor errors in Lax’s approach. The approach taken
in these notes is more general.

Let us take a closer look at the spectral representation obtained last time:

Theorem (Spectral Theorem). Let A ∈ L(H) be self-adjoint. Then there is a finite or
countable family of mutually orthogonal closed subspaces {Hj : j = 1, . . . , N} and a finite
or countable family of Borel probability measures {µj : j = 1, . . . , N} (N <∞ or N =∞)
such that

(1) Hj is invariant for A for j = 1, . . . , N ,
(2) There is an isometry Tj : L2(µj)→ Hj such that

ATj = TjMj,

with Mjf(λ) = λf(λ).

Definition 13.1. We will call a triple {Hj, µj, Tj} as in the theorem a spectral representation
of A.

The first thing to note is that there are many choices for the measures. For instance if
µj(S) > 0 and µj(T ) > 0 with S∩T = ∅ we could split µj in two pieces both of which appear
in the decomposition. Likewise it could happen that two measures have disjoint support, in
which case we could add them together.

To get an idea what happens, think about a compact operator (or a matrix)? Then we
have a list of eigenvalues λα and multiplicities mα. The possible spectral measures µj we
could obtain are just weighted sums of eigenvalues:

µ(λ) =
∑
α

wαδ(λ− λα).

An eigenvalue must appear in mα spectral measures in the list. For instance, if mα = 1 for
all α then we can take N = 1 with the single spectral measure

µ(λ) =
∑
α

2−αδ(λ− λα).

However, we could take N =∞ with

µj(λ) = δ(λ− λj),
so L2(µj) ∼= C. What remains the same in all spectral representations are the eigenvalues
and the multiplicities: the eigenvalues are the support of the spectral measures and the
multiplicity of an eigenvalue is the number of spectral measures in which it appears.

Definition 13.2. The closed support F of a non-negative measure µ is the smallest
closed set such that µ(F c) = 0.

13-1



13-2 13. SPECTRUM, SPECTRAL MEASURES AND SPECTRAL MULTIPLICITIES

The trouble with the support of a measure is that it gives us very little information about
the nature of the measure.

Example. Let µ(λ) =
∑

j 2−jδ(λ− qj), with qj an enumeration of the rationals in [0, 1].

Then the closed support of µ is [0, 1].

Nonethless,

Theorem 13.1. The spectrum of a self-adjoint operator A is

σ(A) = ∪j closed support of µj.

Exercise 27. Prove this.

Theorem 13.2. Let Hj, µj, Tj be a spectral representation of A. Let x ∈ H. Then
mx,x <<

∑
j 2−jµj.

Proof. First note that µk <<
∑

j 2−jµj =: µ for each k. By Radon-Nikodym, there are

functions Fk ∈ L2(µ) such that

dµk(λ) = Fk(λ)dµ(λ).

Now, x =
∑

j xj with xj ∈ Hj. Thus

〈x, f(H)x〉 =
∑
j

〈xj, f(H)xj〉 =
∑
j

∫
f(λ)|fj(λ)|2dµj(λ) =

∫
f(λ)

∑
j

|fj(λ)|2Fj(λ)dµ(λ),

where fj = T †j xj ∈ L2(µj). Since Fj ≥ 0 and∫ ∑
j

|fj(λ)|2Fj(λ)dµ(λ) = ‖x‖2 ,

∑
j |fj(λ)|2Fj(λ) ∈ L1(µ) and the result follows. �

Corollary 13.3. If Hj, µj, Tj and H ′j, µ
′
j, T

′
j are two spectral representations of A then∑

j 2−jµj and
∑

j 2−jµ′j are mutually absolutely continuous.

Proof. Note that
∑

j 2−jµj is the spectral measure associated to
∑

j 2−
j
2Tj1. �

Definition 13.3. The null-class N (µ) of a measure µ is the collection of sets S such
that S ⊂ S ′ with S ′ measurable and µ(S ′) = 0. Abstractly, a collection of sets N will be
called a null-class if

(1) S ⊂ S ′ and S ′ ∈ N =⇒ S ∈ N ,
(2) N is closed under countable unions.

A Borel null class is a null class such that any S ∈ N is contained in a Borel set S ′ ∈ N .

Note that µ << µ′ if and only if N (µ) ⊃ N (µ′). In particular, two measures are
mutually absolutely continuous if and only if they have the same null-class. Thus, although
the measures µj are not canonically associated to A, the null-class of µ =

∑
j 2−jµj is.

More generally, we will say that a vector x has maximal spectral support for A if mx,x

has the same null-class as
∑

j 2−jµj. That is, if mx,x(S) = 0 implies mx′,x′(S) = 0 for all
x′. We have already seen, in the proof of the corollary, that vectors with maximal spectral
support exist. Zornifying we may prove
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Theorem 13.4. There exists a spectral representation such that for each j = 1, . . . , N ,
Tj1 has maximal spectral support for the restriction of A to ⊕Nk=jHj.

In such a spectral representation, µj+1 << µj for each j, so N (µj+1) ⊃ N (µj). Further-
more, the null-classes N (µj), j = 1, . . . , N are canonically associated to A. We can put this
in a somewhat simpler form.

Theorem 13.5 (Spectral theorem with multiplicities). Let A ∈ L(H) be self-adjoint.
Then there is a unique Borel null-class N , and a Borel measurable function Ξ : σ(A) →
N ∪ {∞}, unique up to redefinition on sets in N , such that given any Borel measure µ on
σ(A) of class N , and the associated Hilbert space

L2(µ,CΞ) =
{
f ∈ L2(µ; `2(N)) : f(λ, n) = 0 if n ≥ Ξ(λ)

}
,

there is an isometry T : L2(µ; CΞ)→ H such that

AT = TM

with M f(λ, n) = λf(λ, n).

Proof. Let µj be as above. Since µj+1 << µj for all j, we see that µj << µ, so there
are non-negative Fj ∈ L1(µ1) such that dµj(λ) = Fj(λ)dµ1(λ). We set F1(λ) = 1. We can
choose Fj so that Fj(λ) = 0 =⇒ Fj+1(λ) = 0.

Let N = N (µ1). We have seen that this null-class is canonical. Let

Ξ(λ) = sup{j : Fj(λ) > 0}.
So Ξ(λ) ≥ 1.

Now, let µ a Borel measure with null-class N . Then µ << µ1 so dµ = Fdµ1 with
F ∈ L1(µ1). Since µ1 << µ, we have 1/F ∈ L1(µ). We define a map B : L2(µ; `2(N)) →
⊕jL2(µj) as follows:

[Bf ]j (λ) =

{√
F (λ)
Fj(λ)

f(λ, j) if Fj(λ) > 0.

0 if Fj(λ) = 0.

Exercise 28. Show that B is an isometry.

Now let T : L2(µ; `2(N))→ H be

T f =
∑
j

Tj[Bf ]j.

So T is an isometry and AT = TM as claimed.

Exercise 29. Suppose that Ξ and Ξ′ are distinct multiplicity functions, so {λ : Ξ(λ) 6=
Ξ′(λ)} 6∈ N . Let M denote multiplication by λ on L2(µ,CΞ) and M ′ denote multiplication
by λ on L2(µ,CΞ′). Show that there is no isometry T : L2(µ,CΞ) → L2(µ,CΞ′) such that
M ′T = TM . �

The function Ξ is the multiplicity function.

Exercise 30. Show that if λ is an eigenvalue then Ξ(λ) is the dimension of the corre-
sponding eigenspace.





LECTURE 14

Jacobi matrix representations and orthogonal polynomials

This topic is not in the book, however I think it provides a very useful perspective on
the subject. To start let us define:

Definition 14.1. A vector x ∈ H is cyclic for a self-adjoint operator A ∈ L(H) if
{f(A)x : f ∈ C(σ(A))} is dense in H.

Not every self-adjoint operator has a cyclic vector. Indeed it is easy to see that A has a
cylcic vector if and only if the multiplicity of A is uniformly equal to 1. However, there is
really no loss in studying operators with cyclic vectors. Indeed, the spectral theorem shows
that every self-adjoint operator is a direct sum of operators possessing cyclic vectors.

Theorem 14.1. Let A ∈ L(H) be self-adjoint with a cylic vector x. If H is infinite
dimensional (and separable), then there is an isometry T : H → `2(N) such that

(1) Tx = ‖x‖ δ0

(2) TAT † = J , with J a tri-diagonal semi-infinite matrix, symmetric matrix with real
entries on the diagonal and positive entries on the super diagonal.

Remark. That is

Jsn =

{
ansn+1 + bnsn + an−1sn−1 n ≥ 1,

a0s1 + b0s0 n = 0,

with bn ∈ R and an > 0, corresponding to the semi-infinite matrix

J ∼


b0 a0

a0 b1 a1

a1
. . . . . .
. . . . . .

 .

Such matrices are called Jacobi matrices.

Proof. Assume without loss that ‖x‖ = 1. Let µ = mx,x. Then there is an isometry
S : H → L2(µ) such that

Sx = 1 , and SA = λS.

Thus we may assume without loss of generality that x = 1 ∈ L2(µ) and Af(λ) = λf(λ) with
µ some compactly supported Borel measure on the real line.

Consider λn in L2(µ). The span of this sequence is dense in L2. Furthermore, the
sequence is linearly independent. Indeed, if this were not so then we would have

λn =
n−1∑
j=0

djλ
j

14-1
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for some n, with some coefficients dj. But then

λn+1 =
n−1∑
j=0

djλ
j+1 = dn−1λ

n

n−1∑
j=1

dj−1λ
j =

n−1∑
j=0

dn−1djλ
j+

n−1∑
j=1

dj−1λ
j ∈ span{λj : j = 0, . . . , n−1}.

Continuing by induction we would have λm in the span of {λj}n−1
j=1 . Then H = L2(µ) would

be finite dimensional, contrary to the hypothesis.
Now perform the Gram-Schmidt process on this sequence to produce a sequence of poly-

nomials φn ∈ L2(µ). More specifically, let Pn denote projection of λn onto the space spanned
by 1, . . . , λn. Then

φn =
1

‖λn − Pn−1λn‖
(λn − Pn−1λ

n) .

That is φn is

(1) normalized: ‖φn‖ = 1,
(2) non-negative for large λ, since the leading term is λn/ ‖λn − Pn−1λ

n‖ > 0, and
(3) orthogonal to any polynomial of degree < n.

(In fact, φn is the unique polynomial with these properties.) Thus φn is of the form

φn(λ) =
n∑
j=0

cj(n)λj

with coefficients coefficients cj(n) that satisfy

cj(n) =
1

‖λn − Pn−1λn‖
mj(n),

with mn(n) = 1 and {mj(n)}n−1
j=0 is the minimizer for

F ({αj}n−1
j=0 ) =

∥∥∥∥∥λn −
n−1∑
j=0

αjλ
j

∥∥∥∥∥
2

=

∫ ∣∣∣∣∣λn −
n−1∑
j=0

αjλ
j

∣∣∣∣∣
2

dµ(λ).

The minimizer {mj(n)} is clearly real valued, so cj(n) are real.
The polynomials are orthonormal with respect to the weight µ:∫

φn(λ)φm(λ)dµ(λ) = δn,m.

Since 1 is cyclic, φn form a basis for L2(µ). Let the isometry

T : L2(µ) → `2(N)

be expansion with respect to this basis:

[Tf ]n = 〈f, φn〉 .

What does A do to φn? Well

Aφn(λ) = λφn(λ),

is a polynomial of degree n+ 1. If m > n+ 1 then

〈φm, Aφn〉 = 0
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because φm is orthogonal to all polynomials of degree less than m. Likewise, if m < n − 1
then

〈φm, Aφn〉 = 〈Aφm, φn〉 = 0.

It follows that

Aφn = 〈Aφn, φn〉φn + 〈Aφn, φn+1〉φn+1 + 〈Aφn, φn−1〉φn−1.

Let bn = 〈Aφn, φn〉 and an = 〈Aφn, φn+1〉. Then this equation may be rewritten

Aφn = bnφn + anφn+1 + an−1φn−1,

with the convention that a−1 = 0.
Expanding the polynomials into sums of monomials gives

n∑
j=0

cj(n)λj+1 =
n∑
j=0

bncj(n)λj +
n+1∑
j=0

ancj(n+ 1)λj +
n−1∑
j=0

an−1cj(n− 1)λj.

Thus,

ancn+1(n+ 1) = cn(n), ancn(n+ 1) = cn−1(n)− bncn(n),

ancj(n+ 1) = cj−1(n)− bjcj(n)− an−1cj(n− 1) for j = 1, . . . , n− 1,

and anc0(n+ 1) = −bnc0(n)− an−1c0(n− 1).

In particular, since cn(n) > 0 for all n we see that an = cn(n)/cn+1(n+ 1) > 0. �

Thus we have the following correspondence: any compactly supported Borel measure µ
on R gives rise to a tridiagonal matrix

J = J(µ) =


b0 a0

a0 b1 a1

a1
. . . . . .
. . . . . .

 ,

such that the solution φn(λ) to
Jφ = λφ, φ0 = 1,

that is
λφn(λ) = bnφn(λ) + anφn+1(λ) + an−1φn−1(λ),

is the nth orthonormal polynomial in L2(µ). Conversely any Jacobi matrix, with bj ∈ R and
aj > 0 bounded sequences gives rise to a self-adjoint operator on `2(N), and thus a measure
µ = mx,x with x = δ0. Thus

self adjoint operators with cyclic vectors

≡ compactly supported Borel measures on the real line

≡ Jacobi matrices.





LECTURE 15

Generalized eigenvectors for Jacobi matrices

If we have a measure µ and the associated Jacobi matrix J , then for fixed λ, the sequence
φ(λ) = {φn(λ)}∞n=0 is a solution to

Jφ(λ) = λφ(λ).

That is φ(λ) is an eigenvector! In the end, we have constructed eigenvectors for “any ” self-
adjoint operator. However, we have constructed too may, since this holds for every real λ,
even λ 6∈ σ(A). Clearly, some of these eigenvectors have nothing to do with spectral theory.

Exercise 31. Let J be the Jacobi matrix with bn = 0 and an = 1,

J =


0 1
1 0 1

1
. . . . . .
. . . . . .

 .

Show that ‖J‖ ≤ 2 and that the eigenvector equation has solution

φn(λ) =
sin(k(n+ 1))

sin(k)
,

with k a solution of λ = 2 cos(k). For |λ| ≤ 2 the possible values of k are real and the
resulting solution is bounded. For λ > 2, k = iκ is purely imaginary and the solution,

φn(λ) =
sinh(κ(n+ 1))

sinh(κ)
,

wit λ = 2 cosh(κ) grows exponential as n→∞.

It is no accident that the solution grows exponentially as n → ∞ for λ outside the
spectrum of J :

Theorem 15.1. Let J be a Jacobi matrix and supposes λ 6∈ σ(J) then

lim sup
n→∞

1

n
ln |φn(λ)| > 0.

Proof. Let φn = φn(λ). Suppose, on the contrary, that lim supn→∞
1
n

ln |φn| ≤ 0. Then
for any µ > 0 we have e−µnφn ∈ `2.

Fix µ for the moment and let ψn = e−βnφn. Then

λψn = aneβψn+1 + bnψn + an−1e−βψn−1.

15-1
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That is ψn is an eigenvector of the matrix

Jβ = J +

 0 (eβ − 1)a0

(e−β − 1)a0 0
. . .

. . .

 .

So, for small β,
‖Jβ − J‖ = O(β).

It follows that, for small µ,

σ(Jβ) ⊂ {λ′ : dist(λ′, σ(J)) ≤ Cβ} .
Hence if λ 6∈ σ(J) we can tune µ to be small enough that λ 6∈ σ(Jβ). Thus ψ cannot be an
`2 eigenvector and so the claimed condition must hold. �

Remark. The argument given here is known in mathematical physics as the “Combes-
Thomas” argument. Note that Jβ is not self adjoint.

On the flip side, we may control the growth of the polynomials φn(λ) for λ in a support
of the spectral measure µ = mδ0,δ0 .

Theorem 15.2. Fix ε > 0. For µ almost every λ,

1

(1 + n)
1
2

+ε
φn(λ) ∈ `2.

Proof. Note that 1

(1+n)
1
2+ε

φn is the “Fourier expansion” of a function in L2(µ), since∥∥∥∥∥ 1

(1 + n)
1
2

+ε
φn

∥∥∥∥∥
2

=
∑
n

1

(1 + n)1+ε
<∞.

Since ∥∥∥∥∥ 1

(1 + n)
1
2

+ε
φn

∥∥∥∥∥
2

=

∫ ∑
n

1

(1 + n)1+ε
|φn(λ)|2 dµ(λ),

it follows from Fubini that he integrand on the r.h.s. is finite almost everywhere. �

Corollary 15.3. The spectrum of a Jacobi matrix is the closure of the set of real
numbers such that there is a polynomially bounded solution to Js = λs.

So we have actually succeeded in producing an “eigenvector” expansion for the Jacobi
matrix. The catch is that the eigenvectors need not lie in `2 — they may lie in a space of
sequences with polynomial growth.

If we have a Hilbert space H and a self-adjoint A with a cyclic vector φ0 we can pull back
the “generalized eigenfunctions” in the Jacobi matrix representation as follows. Let φn ∈ H
be the elements obtain by running the Gram-Schmidt process on Anφ0. (If A is multiplication
by λ on an L2 space then φn are the ortho-normal polynomials.) So Tφn = δn ∈ `2(N). Let
us introduce the following “scale of Hilbert spaces”

H+ ⊂ H ⊂ H−,

where

H+ = {x ∈ H :
∞∑
n=0

(1 + n)1+ε |〈x, φn〉|2 ,
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which is a Hilbert space in the inner product

〈x, y〉+ =
∞∑
n=0

(1 + n)1+ε 〈x, φn〉 〈φn, y〉 .

The second space, H− is the dual of H+, the space of linear functionals on H+. It is a
Hilbert space under the inner product induced by the Riesz theorem identifying H+ and H−.
However, if we ignore the Riesz theorem then we can embed H into H− using the H inner
product:

`x(x+) = 〈x+, x〉 , x+ ∈ H+.

This defines a map J : H → H−. The Hilbert space H− can also be thought of as the
completion of H in the norm

‖x‖− = sup
‖x+‖≤1

|〈x, x+〉| .

Exercise 32. Show that ‖x‖− is a norm and that ‖x‖− =
∑

n
1

(1+n)1+ε
|〈x, φn〉|2.

Think of H+ as a space of “smooth vectors” and H− as a space of “distributions.”
The point of the theorem is that eigenvectors may not lie in H, but the relevant ones are
guaranteed to lie in a space of distributions. We will return to this notion later once we
have introduced the notion of “trace class.” Then we will be able to develop a theory of
generalized eigenvector expansions that makes no reference to Jacobi matrices.





LECTURE 16

Unbounded operators

Reading: Chapter 32

Theorem 16.1 (Hellinger Toeplitz). Suppose A : H → H is a linear operator defined on
all of H and that

〈Ax, y〉 = 〈x,Ay〉
for all x, y ∈ H. Then A is bounded.

Proof. Suppose xn → x and that Axn is convergent to u ∈ H. Then

〈u, y〉 = lim
n→∞

〈Axn, y〉 = lim
n→∞

〈xn, Ay〉 = 〈x,Ay〉 = 〈Ax, y〉

for all y ∈ H. Thus u = Ax. That is A is a closed operator. By the closed graph theorem,
A is bounded. �

The main point of this theorem is a negative result. If we are interested in an unbounded
operator like − d

dx2 on L2(R) which is formally symmetric on a dense subspace〈
− d

dx2
u, v

〉
=

〈
u,− d

dx2
v

〉
, u, v ∈ C2 ∩ L2

then there is no extension of −∆ to all of L2 which is also symmetric. (Such an extension
would necessarily be unbounded, since for instance,

− d

dx2
e−ikxf(x) = −f ′′(x) + 2ikf ′(x) + k2f(x),

so ∥∥∥∥− d

dx2
e−ikxf(x)

∥∥∥∥
L2

≥ k2 ‖f‖L2 − 2 |k| ‖f ′‖L2 − ‖f ′′‖L2 →∞, k →∞,

although
∥∥e−ikxf

∥∥
L2 = ‖f‖L2 remains finite.)

Thus to talk about unbounded symmetric operators we must give up the notion that an
operator is defined everywhere.

Definition 16.1. A linear operator A on a Hilbert space H is a linear map A : D → H
with D = D(A) a subspace of H. If D is dense in H, we say that A is densely defined and
define the adjoint A† of A to be the linear operator with

D(A†) = {v : |〈Au, v〉| ≤ C ‖u‖ for all u ∈ D(A)}
such that

〈Au, v〉 =
〈
u,A†v

〉
for u ∈ D(A) and v ∈ D(A).

Remark. By the Riesz theorem A†v is uniquely defined on D(A†) since D(A) is dense.
It may happen that A† is not densely defined.
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Definition 16.2. A linear operator A is self adjoint if A = A†. That is, if D(A) = D(A†)
and

〈Au, v〉 = 〈u,Av〉 u, v ∈ D(A).

Our goal in the coming days is to prove

Theorem 16.2. Let A be a self-adjoint operator on a Hilbert space H, with domain D.
Then there is a projection valued measure E defined on Borel subsets of R such that

(1) E(∅) = 0, E(R) = I
(2) For any pair of measurable sets S, T , E(S)E(T ) = E(S ∩ T )
(3) For every measurable set S, E(S)† = E(S)
(4) E commutes with A. That is, for any measurable set S, E(S) maps the domain D

of A into D, and for all u in D, AE(S)u = E(S)Au.
(5) D =

{
u :

∫
t2d 〈E((−∞, t))u, u〉 <∞

}
,

(6) Au =
∫
tdE((−∞, t))u

That is E is just like the projection valued measure for a bounded self adjoint operator,
except it doesn’t have compact support.

We will give several proofs of this theorem, because they expose different ideas. To begin
we should define the resolvent set and resolvent of an unbounded operator.

Definition 16.3. Let A be a linear operator. We say that a linear operator B is an
extension of A if i.) D(B) ⊃ D(A) and

Au = Bu for all u ∈ D(A),

denoted A ⊂ B. An operator A is symmetric if A ⊂ A†

Symmetric is not the same as self-adjoint.

Exercise 33. For instance, let Au = −u′′ for u ∈ D(A) = C2
0((0, 1)) ⊂ L2(0, 1). Find

A† and show that A is symmetric but not self-adjoint.

In the last example A has a self-adjoint extension. However, it may happen that a
symmetric operator has no self-adjoint extensions.

The sorts of linear operators we will deal with are closed in the following sense

Definition 16.4. A linear operator A is closed if whenever xn ∈ D(A) are such that
xn → x ∈ H and Axn converges we have x ∈ D(A) and Axn → Ax.

Exercise 34. If A is densely defined, show that A† is closed.

Exercise 35. An operator A is called closeable if it has a closed extension. The closed
extension with smallest domain is called the closure of A, denoted A. Show that densely
defined A is closeable if and only if A† is densely defined, in which caseA ⊂ (A†)† and use
the previous exercise.

Definition 16.5. Let A be a densely defined closed linear operator on a Hilbert space.
The resolvent set ρ(A) is the set of all z ∈ C such that A − zI maps D(A) onto H in a
one-to-one fashion. The resolvent is the map (A− zI)−1 : H → D(A).

Proposition 16.3. Let z ∈ ρ(A) with A a densely defined closed linear operator. Then
(A− zI)−1 is bounded.
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Proof. By definition (A − zI)−1 is everywhere defined. By the closed graph theorem,
it suffices to show that (A − zI)−1 is closed. Let xn ∈ H be such that xn → x and
(A− zI)−1xn → u. Then

(A− zI)(A− zI)−1xn = xn → x,

so since A− zI is closed, u ∈ D(A) and (A− zI)x = u. Thus x = (A− zI)−1u. �

We used:

Exercise 36. Let A be a closed linear operator and let B ∈ L(H) be bounded. Define
A+B on D(A) by (A+B)u = Au+Bu. Show that A+B is closed.

Theorem 16.4. The resolvent set ρ(A) of a densely defined closed linear operator is
open, (A− zI)−1 is a strongly analytic function of z ∈ ρ(A), and the resolvent identity

(A− zI)−1 − (A− wI)−1 = (w − z)(A− zI)−1(A− wI)−1

holds.

Proof. This proceeds along the same lines as in Banach algebras. The key is the
Neumann series expansion

(A− wI)−1 =
∞∑
n=0

(w − z)n(A− zI)−n−1,

from which it follows that (A − wI)−1 is analytic in w in a disc of radius 1/ ‖(A− zI)−1‖
centered at z for any z ∈ ρ(A). That ρ(A) is open follows. The resolvent identity can be
verified by explicit calculation since

(A− zI)− (A− wI) = (w − z)I

on a dense subset. �

Definition 16.6. The spectrum σ(A) of a densely defined closed linear operator A is
the complement of the resolvent set ρ(A).

Theorem 16.5. The spectrum σ(A) of a densely defined closed linear operator A is a
closed subset of C. If A is self-adjoint then σ(A) ⊂ R and∥∥(A− zI)−1

∥∥ ≤ 1

Im z
.

Remark. We will see later that σ(A) 6= ∅ if A is self-adjoint. However there are densely
defined closed operators with empty spectrum:

Exercise 37. Let A = d
dx

on the domain D of absolutely continuous functions f on [0, 1]
with f(0) = 0 and f ′ ∈ L2(0, 1). Show that A is densely defined, closed and that σ(A) = ∅.
(Hint: A is the inverse of the Volterra integral operator V f(x) =

∫ x
0
f(y)dy, which is a

compact operator with no eigenvalues.)

As the exercise shows, empty spectrum is in some sense the same as σ(A) = {∞}.

Proof. The spectrum is the complement of an open set, so it is closed. Now suppose A
is self-adjoint and z 6∈ R. We must show that z ∈ ρ(A). For u ∈ D(A) we have

‖u‖ ‖(A− zI)u‖ ≥ |〈(A− zI)u, u〉| ≥ |Im (A− zI)u, u| = |Im z| ‖u‖2 ,
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so
‖(A− zI)u‖ ≥ |Im z| ‖u‖ .

It follows that A − zI is one to one, that ran(A − zI) is closed, and that the inverse map
(A− zI)−1 : ran(A− zI)→ H satisfies∥∥(A− zI)−1u

∥∥ ≤ 1

| Im z|
‖u‖ .

It remains to show that ran(A − zI) is dense, as then it follows that ran(A − zI) = H. So
supposev ⊥ ranA− zI. Then

〈v,Au〉 = z 〈v, u〉
for all u ∈ D(A). It follows that v ∈ D(A†) = D(A) and Av = zv. But then 〈Av, v〉 = z ‖v‖2,
so upon taking imaginary parts we find 0 = Im z ‖v‖2. Since Im z 6= 0 we have v = 0. �



LECTURE 17

Functional calculus fo self-adjoint operators

Let A be a self-adjoint operator. Then the resolvent R(z) = (A − zI)−1 is an L(H)−
valued analytic map on C \ R. Let u ∈ H and consider

Fu(z) = 〈R(z)u, u〉 .
So Fu : C \ R→ C is analytic. Note that

ImFu(z) =
1

2i
[〈R(z)u, u〉 − 〈u,R(z)u〉] =

1

2i

〈
(R(z)−R(z)†)u, u

〉
.

Exercise 38. Show that R(z)† = R(z).

So by the resolvent identity

ImFu(z) =
1

2i
(z − z)

〈
R(z)†R(z)u, u

〉
= Im z ‖R(z)u‖2 .

Thus, if Im z > 0 then ImFu(z) > 0. So we can think of Fu as an analytic self map of the
upper half plane {Im z > 0}.

Last term we showed

Theorem 17.1 (Herglotz-Riesz). Let F be an analytic function in the unit disk D such
that ReF ≥ 0 in D. Then there is a unique non-negative, finite, Borel measure µ on ∂D
such that

F (z) =

∫ 2π

0

eiθ + z

eiθ − z
µ(dθ) + i ImF (0).

Conversely every analytic function in the disk with positive real part can be written in this
form.

As a corollary, using the mapping ζ 7→ z = i1+ζ
1−ζ we also showed (see Lecture 21 from the

notes for last term) that

Theorem 17.2. Let F be an analytic map from the upper half plane {z : Im z > 0}
into itself. Then there is a unique non-negative Borel measure µ on R and a non-negative
number A ≥ 0 such that ∫

R

1

1 + x2
dµ(x) <∞

and

F (z) = Az + ReF (i) +

∫
R

1 + xz

x− z
1

1 + x2
dµ(x).

Corollary 17.3 (Nevanlinna). Every analytic self map F of the upper half plane that
satisfies

lim sup
y→∞

y |F (iy)| <∞ (?)

17-1
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is of the form

F (z) =

∫
R

1

x− z
dµ(x), (??)

with µ a non-negative measure of finite mass

µ(R) = lim
y→∞

y ImF (iy).

Proof. The condition (?) guarantees that A = 0. Also, we have

y |F (iy)| ≥ y ImF (iy) =

∫
R

Im
1 + ixy

x− iy

y

1 + x2
dµ(x),

and

Im
1 + ixy

x− iy
= y

1 + x2

x2 + y2
.

So

y |F (iy)| ≥
∫

R

y2

x2 + y2
dµ(y).

By dominated convergence, the r.h.s. converges to µ(R) as y → ∞. Thus (?) implies that
µ(R) <∞.

Finally, we have
1 + xz

x− z
1

1 + x2
=

1

x− z
− Re

1

x− i
.

So,

F (z) =

∫
R

1

x− z
dµ(x) +

[
ReF (i)− Re

∫
R

1

x− i
dµ(x)

]
.

Since F (iy)→ 0 as y →∞, we conclude that the term in brackets on the r.h.s. is zero and
the representation (??) holds. �

Returning to the self-adjoint operatorA, let us check condition (?) for Fu(z) = 〈R(z)u, u〉 .
By the theorem of last time,

y |Fu(iy)| ≤ y
1

y
‖u‖2 ≤ ‖u‖2 ,

so (?) holds. We conclude the existence of a finite Borel measure µu,u such that

〈R(z)u, u〉 =

∫
R

1

λ− z
dµu,u(λ).

This looks a lot like a spectral representation.

Theorem 17.4. Let A be a self-adjoint operator on a Hilbert space H. To each pair of
vectors u, v ∈ H there is associated a unique complex Borel measure of finite total variation
on the real line, µu,v, such that〈

(A− zI)−1u, v
〉

=

∫
R

1

λ− z
dµu,v(λ).

Furthermore

(1) For each u, µu,u is non-negative with µu,u(R) = ‖u‖2.
(2) The map (u, v) 7→ µu,v is linear in u, skew linear in v, skew-symmetric µu,v = µv,u,

and the total variation of µu,v is bounded by ‖u‖ ‖v‖.
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Proof. We have already obtained the non-negative measures µu,u. The identity for the
norm is equivalent to

lim
y→∞

y Im
〈
(A− iy)−1u, u

〉
= ‖u‖2 .

Since
y(A− iy)−1 = iI − iA(A− iy)−1 (?)

it suffices to show that A(A − iy)−1u → 0 as y → ∞. Referring to the identity (?) we see
that ‖A(A− iy)−1‖ is uniformly bounded. Thus it suffices to show A(A − iy)−1u → 0 as
y →∞ for u in the dense set D(A). However for such u we then have∥∥A(A− iy)−1u

∥∥ =
∥∥(A− iy)−1Au

∥∥ ≤ 1

y
‖Au‖ → 0.

We may define the measure µu,v by polarization,

µu,v =
1

4
[µu+v,u+v − µu−v,u−v + iµu+iv,u+iv − iµu−iv,u−iv] .

It is an easy exercise to see that the identity for the resolvent holds. Skew-linearity and
skew-symmetry of the map is clear from the representation formula for the resolvent. To see
the inequality for norms, note that (u, v) 7→

∫
S

dµu,v is a (possibly degenerate) inner product
on H Thus by Cauchy-Schwarz we have

|µu,v(S)| ≤
√
µu,u(S)µv,v(S) ≤ 1

2
[µu,u(S) + µv,v(S)] .

It follows that the total variation is bounded by

‖µu,v‖ ≤
1

2
[µu,u(R) + µv,v(R)] =

1

2
[‖u‖2 + ‖v‖2],

which is the wrong inequality! But this is not a problem as the inequality we have derived
does not scale properly. What we have really learned is that if ‖u‖ , ‖v‖ ≤ 1 then

‖µu,v‖ ≤ 1.

The result follows by scaling. �

Differentiating each side of the identity for the resolvent we see that〈
(A− zI)−nu, v

〉
= (−1)n

dn−1

dzn−1

∫
R

1

λ− z
dµu,v(λ) =

∫
R

1

(λ− z)n
dµu,v(λ).

It follows that any of

〈
n∑
j=1

cj(A− zI)−mju, v〉 =

∫
R

n∑
j=1

cj(λ− z)mjd mu,v(λ).

Exercise 39. Show that functions of the form f(λ) =
∑n

j=1 cj(λ − z)mj are dense in

C0(R), the continuous functions on R that vanish at ∞.

So we have a continuous functional calculus.

f 7→ 〈f(A)u, v〉 ,
with 〈f(A)u, v〉 defined as a limit limn→∞ 〈fn(A)u, v〉 where fn is of the above form.





LECTURE 18

Spectral representation of self-adjoint operators

Last time we constructed a continuous functional calculus f 7→ f(A) from C0(R)→ L(H)
for a self-adjoint operator A. We got this from the spectral measures µu,v constructed from
the Riesz-Herglotz representation for the resolvent. Now consider the map which associates
to any Borel set S in R the quadratic form

QS(u, v) =

∫
S

dµu,v.

We have

(1) |QS(u, v)| ≤ ‖u‖ ‖v‖
(2) QS(•, •) is a sesquilinear skew-symmetric form.

We have seen in Lecture 11 that any such form is the quadratic form of a bounded self-adjoint
operator. So we have E(S) ∈ L(H) such that

〈E(S)u, v〉 = µu,v(S).

Clearly we have

〈f(A)u, v〉 =

∫
R
f(λ)d 〈E(−∞, λ)u, v〉 , (?)

for f ∈ C0(R). As you have guessed, S 7→ E(S) is the projection valued measure for A. So
we have the theorem claimed in Lecture 16:

Theorem. Let A be a self-adjoint operator on a Hilbert space H, with domain D. Then
there is a projection valued measure E defined on Borel subsets of R such that

(1) E(∅) = 0, E(R) = I
(2) For any pair of measurable sets S, T , E(S)E(T ) = E(S ∩ T )
(3) For every measurable set S, E(S)† = E(S)
(4) E commutes with A. That is, for any measurable set S, E(S) maps the domain D

of A into D, and for all u in D, AE(S)u = E(S)Au.
(5) D =

{
u :

∫
t2d 〈E((−∞, t))u, u〉 <∞

}
,

(6) Au =
∫
tdE((−∞, t))u

Proof. Given the functional calculus, the proof of (1), (2), and (3) is essentially the
same as the corresponding result for bounded self-adjoint operators. (See Lecture 11.)

To show (4), let us first show that E(S)f(A) = f(A)E(S) for any f ∈ C0(A). We have

〈E(S)f(A)u, v〉 =

∫
R
f(λ)d 〈E(−∞, λ)u,E(S)v〉 =

∫
R
f(λ)d 〈E(S)E(−∞, λ)u, v〉

=

∫
R
f(λ)d 〈E(−∞, λ)E(S)u, v〉 = 〈f(A)E(S)u, v〉

18-1
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by (2). In particular (A− zI)−1 commutes with E(S) for any z ∈ C \ R, so E(S) : D → D
(recall that D = ran(A− zI)−1.) If u ∈ D then

E(S)Au = (A− zI)(A− zI)−1E(S)Au = (A− zI)E(S)(A− zI)−1Au

= (A− zI)E(S)u+ z(A− zI)E(S)(A− zI)−1u

= AE(S)u− zE(S)u+ zE(S)u = AE(S)u.

To prove (5), note that if v ∈ D then v = (A− iI)−1u for some u ∈ H. So

〈E(T )v, v〉 = 〈E(T )R(i)u,R(i)u〉

= 〈R(−i)R(i)E(T )u, u〉 =
1

2i
〈[R(i)−R(−i)]E(T )u, u〉

=
1

2i

∫
R

[
1

t− i
− 1

t+ i

]
d 〈E(−∞, t)E(T )u, u〉

=

∫
T

1

1 + t2
d 〈E(−∞, t)u, u〉 .

Thus d 〈E(−∞, t)v, v〉 = 1
1+t2

d 〈E(−∞, t)u, u〉. Thus

(1 + t2)d 〈E(−∞, t)v, v〉 = d 〈E(−∞, t)u, u〉
is a finite measure, so

∫
R t

2d 〈E(−∞, t)v, v〉 <∞ as claimed.
Conversely, suppose

∫
R t

2d 〈E(−∞, t)v, v〉 <∞. Given u ∈ H, since

|〈E(S)v, u〉| ≤ ‖u‖2 ‖E(S)v‖2 = 〈E(S)v, v〉 ,
the measure d 〈E(−∞, t)v, u〉 is absolutely continuous with respect to d 〈E(−∞, t)v, v〉.
Thus

d 〈E(−∞, t)v, u〉 = Fu(t)d 〈E(−∞, t)v, v〉 ,
and∣∣∣∣∫

R
td 〈E(−∞, t)v, u〉

∣∣∣∣ ≤ [∫
R
t2d 〈E(−∞, t)v, v〉

∫
R
|Fu(t)|2 d 〈E(−∞, t)v, v〉

] 1
2

≤ ‖u‖ ‖v‖
[∫

R
t2d 〈E(−∞, t)v, v〉

] 1
2

.

Thus u 7→
∫

R td 〈E(−∞, t)v, u〉 is a bounded linear functional. So ∃ṽ such that∫
R
td 〈E(−∞, t)v, u〉 = 〈ṽ, u〉 .

Now consider (A− iI)−1ṽ. We have〈
(A− iI)−1ṽ, u

〉
=

∫
R

1

t− i
d 〈E(−∞, t)ṽ, u〉 ,

and

〈E(−∞, t)ṽ, u〉 =

∫
R
sd 〈E(−∞, s)v, E(−∞, t)u〉 =

∫
(−∞,t)

sd 〈E(−∞, s)v, u〉 .

So

d

∫
(−∞,t)

sd 〈E(−∞, s)v, u〉 = tdE(−∞, t)v, u,
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and 〈
(A− iI)−1ṽ, u

〉
=

∫
R

t

t− i
d 〈E(−∞, t)v, u〉 = 〈v, u〉+ i

〈
(A− iI)−1v, u

〉
.

We conclude that
(A− iI)−1ṽ = v + i(A− iI)−1v.

It follows that v ∈ D(A) and

Av = A(A− iI)−1(ṽ − v) = ṽ − v + i(A− iI)−1(ṽ − v) = ṽ.

In particular, we have proved that for any v ∈ D(A)

〈Av, u〉 =

∫
R
td 〈E(−∞, t)v, u〉 ∀u.

Exercise 40. Show that

Av =

∫
R
tdE(−∞, t)v

as an improper norm convergent Stieltjes integral. That is, show that

Av = lim
r→∞

∫ r

−r
tdE(−∞, t)v,

where the integrals
∫ r
−r tdE(−∞, t)v can be understood as Riemann-Stieltjes integrals, that

is as a limit of Riemann sums
n∑
j=1

tjE(Ij)v,

where tj ∈ Ij and Ij is a partition of (−r, r) into disjoint intervals. �

As in the bounded case we have

Theorem 18.1. Let A be a self-adjoint operator on a Hilbert space H. Then there is a
finite measure space M,µ and an isometry T : H → L2(M) such that for every u ∈ D(A)

[TAu](m) = Φ(m)Tu(m),

where Φ(m) is a real valued measurable function on M . If A is unbounded, then the function
Φ is unbounded and

TD(A) =
{
f ∈ L2(m) : Φf ∈ L2(m)

}
.

Spectral multiplicities and the decomposition into point, singular continuous and abso-
lutely continuous spectrum can be handled just as in the bounded case.





LECTURE 19

Unitary operators and von Neumann’s proof the spectral
theorem; Positive operators and the polar decomposition

Unitary operators.

Theorem 19.1. Let U :∈ L(H) be a unitary operator (U †U = UU † = I). Then σ(U) ⊂
{|z| = 1} =: S1 and there is a projection valued measure E on Borel subsets of S1 such that

U =

∫
S1

eiθdE(θ).

Remark. There is a functional calculus for U given by

f(U) =

∫
S1

f(θ)dE(θ), f ∈ C(S1).

Proof. Since
‖U‖ = sup

‖x‖=1

‖Ux‖ = sup
‖x‖=1

‖x‖ = 1,

we see that σ(U) ⊂ {|z| ≤ 1}. Also, for |z| < 1, (I − zU †) is invertible and

(U − z)U †(I − zU †)−1 = (I − zU †)(I − zU †)−1 = I = (I − zU †)−1(I − zU †),
so z 6∈ σ(U). Thus σ(U) ⊂ S1. (In fact, we proved this previously in the context of C∗

algebras.)
Now, construct a functional calculus for U by taking the norm limit of polynomials

p(U,U †). By Stone-Weierstrass, we learn to evaluate f(U) for any f ∈ C(S1). By Riesz-
Kakutani we find spectral measures µx,y for any x, y ∈ H such that

〈f(U)x, y〉 =

∫
S1

f(z)dµx,y(z).

The PVM E is constructed from the spectral measures just as for self-adjoint operators. �

Theorem 19.2. Let A be self-adjoint with domain D ⊂ H. Then U = (A− iI)(A+iI)−1

is a unitary map.

Proof. Since A − iI maps D onto H in a one to one fashion and (A + iI)−1 maps H
onto D in a one to one fashion, we see that U : H → H is one to one and onto. Thus, it
suffices to show that U is isometry.

Let u ∈ H and let
v = (A+ iI)−1u, w = Uu.

Then v ∈ D and
(A+ iI)v = u, (A− iv) = w.

Thus

‖u‖2 = 〈(A+ iI)v, (A+ iI)v〉 = ‖Av‖2 − i 〈Av, v〉+ i 〈v,Av〉+ ‖v‖2 = ‖Av‖2 + ‖v‖2 ,
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and likewise

‖w‖2 = 〈(A− iI)v, (A− iI)v〉 = ‖Av‖2 + ‖v‖2 ,

so ‖u‖ = ‖w‖. �

The operator U = (A− iI)(A + iI)−1 is called the “Cayley Transform” of A. Note that
it is the fractional linear transformation

Φ(λ) =
λ− iI

λ+ iI

evaluated at λ = A. This map maps R to S1 with ∞ 7→ 1 and the {Im z > 0} 7→ {|z| < 1}.
The original proof of the spectral Theorem for self-adoint operators given by von Neumann
appealed to the spectral theory of U . Specifically, if EU is the PVM for U then we define

E(S) = EU(Φ(S)).

Positive operators and the polar decomposition.

Definition 19.1. An unbounded operator A is positive (or form positive) if

〈Av, v〉 ≥ 0

for all v ∈ D(A).

Remark. An unbounded positive operator A may not be self-adjoint. We will see next
time, however, that such an operator always has a positive self-adjoint extension.

Theorem 19.3. A self-adjoint operator A is positive if and only if σ(A) ⊂ [0,∞).

Proof. By the spectral theorem we may as well suppose that H = L2(M) and Af(m) =
Φ(m)f(m) for some unbounded real valued function Φ on M . Clearly

σ(A) = essential closure of {Φ(m) : m ∈M},
where

essential closure of S = smallest closed set F such that F c ∩ S has measure 0.

Thus σ(A) ⊂ [0,∞) if and only if Φ(m) ≥ 0 for almost every m. This latter condition is
clearly necessary and sufficient for∫

M

Φ(m) |f(m)|2 dµ(m) ≥ 0

for all f ∈ L2(µ). �

Theorem 19.4. Let A be self-adjoint and positive. Then there is a unique positive self-
adjoint operator

√
A such that (

√
A)2 = A.

Proof. Assume without loss that H = L2(M) and Af(m) = Φ(m)f(m) with Φ(m) ≥ 0.

Then define
√
Af(m) =

√
Φ(m)f(m) on the domain

D(
√
A) =

{
f :

√
Φ(m)f(m) ∈ L2

}
.

Clearly
√
A is positive and self-adjoint.

Exercise 41. Verify that
√
A is unique. �
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Remark. Note that we can define F (A) for any function F ∈ C(σ(A)) by

F (A)u =

∫
R
F (λ)dE(−∞, λ)u,

on the domain {
u :

∫
R
|F (λ)|2d ‖E(−∞, λ)u‖2 < ∞

}
.

Theorem 19.5 (Polar decomposition). Let A be a densely defined closed operator on a
Hilbert space H. Then there is a positive self-adjoint operator |A| with D(|A|) = D(A) and
a partial isometry T : H → H such that

A = T |A|.

Proof. Since A is closed, it’s domain D is a Hilbert space under the inner product

〈u, v〉1 = 〈Au,Av〉+ 〈u, v〉 .
Let w ∈ H and note that

| 〈u,w〉 | ≤ ‖u‖ ‖w‖ ≤ ‖w‖ ‖u‖1 , for all u ∈ D.
By the Riesz theorem, there is a unique element v ∈ D such that

〈u,w〉 = 〈Au,Av〉+ 〈u, v〉 , for all u ∈ D.
Let J : H → D denote the map Jw = v. It is well defined by uniqueness of v and is
one-to-one since

〈u,w〉 = 0 for all u ∈ D =⇒ w = 0

since D is dense. Let D′ = ran J ⊂ D and define M : D′ → H to be

Mu = J−1u− u.
(Formally, J = (A†A + I)−1 so M = A†A. All of the “nonsense” is to make sense of this
definition.)

Exercise 42. Show that M is positive and self-adjoint.

Since M is positive and self-adjoint, it has a square root. Let |A| =
√
M . Note that for

u ∈ D′
‖Au‖2 = ‖u‖2

1 − ‖u‖
2 =

〈
u, J−1u

〉
− 〈u, u〉 = 〈u,Mu〉 = ‖|A|u‖2 .

Since D′ is dense in D it follows that D = D(|A|) and that

‖Au‖ = ‖|A|u‖2 for all u ∈ D.
Now let T |A|u = Au. This definition is ok because Au = 0 =⇒ |A|u. Clearly T is an

isometry from ran |A| to ranA. Extend it (uniquely) to an isometry from ran |A| → ranA
and then as you like to ran |A|⊥. �





LECTURE 20

Examples of self-adjoint extensions

In exercise 35 of Lecture 16 (exercise 21 of the homework), you showed that a densely
defined operator A is closeable, i.e., has a closed extension, if and only if A† is densely
defined. In fact

Theorem 20.1. Let A be densely defined with densely defined adjoint A†. If A is closed
then (A†)† = A. If A is only closeable then its closure A = (A†)†.

The proof of is based on

Lemma 20.2. Let A be densely defined, with graph Γ(A) = {(u,Au) : u ∈ D(A)}. Then
the graph of A†, Γ(A†) = {(u,A†u) : u ∈ D(A†)} is

Γ(A†) = J(Γ(A))⊥,

where J(u, v) = (−v, u) and Γ(A)⊥ is the annihilator of Γ(A) in H ⊕H:

Γ(A)⊥ = {(u, v) ∈ H ⊕H : 〈u, u′〉+ 〈v, v′〉 = 0 for all (u′, v′) ∈ Γ(A)} .

Exercise 43. Prove the lemma.

Proof of Theorem. First suppose A is closed. Then Γ(A) is a closed subspace of
H ⊕H. Thus [Γ(A)⊥]⊥ = Γ(A). It follows that

Γ((A†)†) = JΓ(A†)⊥ = J2Γ(A) = Γ(A),

so A = (A†)†.

Exercise 44. Verify that A = (A†)† if A is closeable. �

If A is symmetric then A† ⊃ A. It follows that a densely defined symmetric operator A
is closeable.

Definition 20.1. A densely defined symmetric operator A is essentially self adjoint if
A is self-adjoint.

A useful criterion is

Proposition 20.3. Let A be densely defined and symmetric. Then A is essentially self-
adjoint if and only if A† is symmetric.

Proof. Since A is symmetric
A ⊂ A ⊂ A†.

Now, for any densely defined closeable operator A we have A
†

= A†. Thus, if A is essentially
self-adjoint then A = A† is self-adjoint, hence symmetric. On the other hand if A† is
symmetric, so

A† ⊂ (A†)† = A,
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we conclude that

A† = A = A
†
,

so A is self-adjoint. �

Examples.

Proposition 20.4. Let Af(x) = i d
dx
f(x) on D = C∞c (R). Then A isA ⊂ (A†)† self

adjoint.

Proof. By integration by parts, A is symmetric. Furthermore

D(A†) =

{
f ∈ L2 :

∣∣∣∣∫
R
f(x)

d

dx
u(x)dx

∣∣∣∣ ≤ c

√∫
R
|u(x)|2dx u ∈ C∞c (R)

}
.

By the Riesz Frechet theorem, since C∞c is dense, this is exactly the set of f ∈ L2 such that
the distributional derivative of f ∈ L2:

D(A†) =

{
f ∈ L2 :

d

dx
f ∈ L2

}
.

Furthermore it follows that A†f(x) = i d
dx
f(x) for all such f .

Exercise 45. Verify that integration by parts holds for all f, g ∈ L2 such that the
distributional derivatives f ′, g′ ∈ L2:∫

R
f(x)g′(x)dx = −

∫
R
f ′(x)g(x)dx.

Thus A† is symmetric and hence A is essentially self-adjoint. �

However, not every symmetric operator is essentially self-adjoint.

Proposition 20.5. Let Af(x) = i d
dx
f(x) on D = {f ∈ C1([0, 1]) : f(0) = f(1) = 0} ⊂

L2(0, 1). Then A is not essentially self-adjoint.

Proof. By IBP, A is symmetric:

〈Af, g〉 =

∫ 1

0

if ′(x)g(x)dx = i [f(1)g(1)− f(0)g(0)] +

∫ 1

0

f(x)ig′(x)dx = 〈f, Ag〉 ,

since the boundary terms vanish if f, g ∈ D.

Exercise 46. Show that D(A† = {f ∈ L2(0, 1) : f ′ ∈ L2} and A†f(x) = if ′(x).

Now A† is certainly not self-adjoint since if f(x) = e−izx

A†f(x) = zf(x),

so every complex number z ∈ σ(A†).
The closure Af(x) = if ′(x) on

D(A) =
{
f ∈ L2(0, 1) : f ′ ∈ L2 and f(0) = f(1) = 0

}
.

Note that f ′ ∈ L2 =⇒ f is continuous, so f(0) = f(1) = 0 makes sense. �

The operator A of the previous example does have self-adjoint extensions. In fact,



20. EXAMPLES OF SELF-ADJOINT EXTENSIONS 20-3

Proposition 20.6. Let α ∈ [0, 2π) and let Aαf(x) = i d
dx
f(x) on Dα = {f ∈ L2(0, 1) :

f ′ ∈ L2 and f(1) = eiαf(0)}. Then Aα is self-adjoint, and

σ(Aα) = {α + 2πn : n ∈ N},
Each point α+ 2πnσ(Aα) is a non-degenerate eigenvalue. The eigenfunctions for Aα are an
orthonormal basis for L2(0, 1).

Proof.

Exercise 47. Show that Aα is self-adjoint.

Exercise 48. Show that λ is an eigenvalue of Aα if and only if λ = α+ 2πn for some n.
Conclude that {α + 2πn} ⊂ σ(Aα).

Exercise 49. Fix g ∈ L2(0, 1). Obtain an explicit solution fDα to the equation

(Aα − α− π)f = g

in terms of an integral operator acting on g. (Hint: invert the derivative using an integrating
factor. Use the constant of integration to satisfy the boundary condition required so that
f ∈ Dα.)

Exercise 50. Show that the integral operator you obtained in the last exercise is compact
and self-adjoint. Conclude that {α + 2πn} = σ(Aα) and that the eigenfunctions you found
are an orthonormal basis. �

However, there are symmetric operators with no self-adjoint extensions

Proposition 20.7. Let Af(x) = i d
dx
f(x) on {f ∈ L2(0,∞) : f ′ ∈ L2 and f(0) = 0.

Then A is closed and symmetric but has no self-adjoint extensions.

Proof.

Exercise 51. Prove that A is closed an symmetric.

Exercise 52. Show that A†f = if ′ on

D(A†) =
{
f ∈ L2(0,∞) : f ′ ∈ L2

}
.

Now A† is clearly not symmetric since A†e−x = −ie−x. Note that

dim ker(A† − z) =

{
0 Im z > 0

1 Im z < 0.

To proceed we need

Lemma 20.8. Let A be closed, densely defined and symmetric. Then ran(A ± iI) are
closed.

Proof. Note that

‖(A± iI)u‖2 = 〈Au,Au〉 ∓ i 〈Au, u〉 ± i 〈u,Au〉 〈u, u〉 = ‖Au‖2 + ‖u‖2 . �

Since ker(A† − i) = {0} and ran(A+ iI) is closed we conclude that

ran(A+ iI) = H.

If B ⊃ A is a self-adjoint extension and v ∈ D(B) \ D(A), then there is u ∈ D(A) such that

Au+ iu = Bv + iv.
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Since B extends A, we conclude that

(B + i)(v − u) = 0.

This is a contradiction since B is self-adjoint. So no such extension can exist. �



LECTURE 21

Theory of self-adjoint extensions

Theorem 21.1. Let B be a closed densely defined symmetric operator. Then for any
z ∈ C \R, B− z : D(B)→ H is injective with closed range and (B− z)−1 : ran(B− z)→ H
is a bounded map with norm less than 1/| Im z|.

Proof. Let u ∈ D(B) and z ∈ C. Then

| Im z| ‖u‖2 = |Im 〈(B − z)u, u〉| ≤ ‖(B − z)u‖ ‖u‖ .
Thus

‖u‖ ≤ 1

| Im z|
‖(B − z)u‖ .

It follows that B − z is one-to-one and if fn ∈ ran(B − z) is a convergent sequence, then
un converges where fn = (B − z)un. Since B is closed, u = limn un ∈ D(B) and so
f = limn fn ∈ ranB. �

Although B − z is injective with closed range, it may still happen that z ∈ σ(B) if
ran(B − z) 6= H. Indeed,

Theorem 21.2. A closed symmetric operator B is self-adjoint if and only if σ(B) ⊂ R.

Proof. The implication =⇒ was already established. For the converse suppose B is
closed symmetric and ±i 6∈ σ(B). Let u ∈ H and let x = (A− i)−1u. Then

〈u, y〉 = 〈(A− i)x, y〉 = 〈x, (A+ i)y〉 =
〈
(A− i)−1u, (A+ i)y

〉
for all y ∈ D(A). Plug in y = (A+ i)−1v for some v ∈ H to learn that〈

u, (A+ i)−1v
〉

=
〈
(A− i)−1u, v

〉
for all u, v ∈ H.

That is [(A+ i)−1]
†

= (A− i)−1. Now suppose v ∈ D(A†). Then

〈(A− i)x, v〉 =
〈
x, (A† + i)v

〉
,

for all x ∈ D(A). Setting u = (A− z)x we can write this as

〈u, v〉 =
〈
(A− i)−1u, (A† − i)v

〉
=
〈
u, (A+ i)−1(A† + i)v

〉
,

for all u ∈ H. Thus

v = (A+ i)−1(A† + i)v

which shows that v ∈ D(A) and that

Av + iv = A†v + iv =⇒ Av = A†v. �

Theorem 21.3. Let C be a densely defined, closed symmetric operator in a Hilbert space
H. Then codim ran(C − z) = dim ker(C† − z) is the same for all z with Im z > 0, and
similarly for all z with Im z < 0.
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Let V+ = ker(C†+ i), n+ = dimV+, and V− = ker(C†− i), n− = dimV−. Then the set of
self-adjoint extensions to C is in one-to-one correspondence with the set of linear isometries
from U : V− → V+. In particular, C has a self-adjoint extension if and only if n+ = n−.

Remark. n± are called the deficiency indices of C.

We will use:

Lemma 21.4. Let V1, V2 be closed subspaces of a Hilbert space H. If dimV1 > dimV2

then there is u ∈ V1 such that u 6= 0 and 〈u, v〉 = 0 for all v ∈ V2.

Exercise 53. Prove this.

Proof. We will prove that codim ran(C − z) is constant in the upper and lower half
planes next time.

Let V be the Cayley transform of C,

V = (C − i)(C + i)−1, V : ran(C + i)→ ran(C − i).

I claim his map is an isometry. Indeed, if x = (C + i)u, then V x = (C − i)u, so

‖V x‖2 = ‖(C − i)u‖2 = 〈Cu,Cu〉 − i 〈u,Cu〉+ i 〈Cu, u〉+ 〈u, u〉
= 〈Cu,Cu〉+ i 〈u,Cu〉 − i 〈Cu, u〉+ 〈u, u〉 = ‖(C + i)u‖2 = ‖x‖2 .

We want to extend V to be a unitary map from H → H. To do this we need an isometry

T : V− = (ran(C + i))⊥ → (ran(C − i))⊥ = V+.

Let T be such an isometry, consider the unitary map

Ux = V Px+ T (I − P )x,

with P orthogonal projection onto ran(C + i), and define

A = i(I + U)(I − U)−1,

with domain
D(A) = ran(I − U).

I claim that A is a self-adjoint extension of C.
First we must see that I − U is one-to-one. Suppose on the contrary that

x− Ux = 0

for some x. Then x ⊥ ran(I − U †) = ran(I − U †)U = ran(U − I). However,

ran(U − I) ⊃ ran(V − I),

and
V − I = (C − i)(C + i)−1 − (C + i)(C + i)−1 = −2i(C + i)−1.

So ran(V − I) = D(C) is dense. Thus x = 0. This argument also shows that

D(A) = ran(I − U) ⊃ ran(I − V ) = D(C).

Let u ∈ D(C) and let x = Cu+ iu. Then

(I − U)x = x− V x = 2i(C + i)−1x = 2iu,

(I + U)x = x+ V x = 2C(C + i)−1x = 2Cu.
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Putting these things together we see that A is an extension of C:

Au = i(I + U)(I − U)−1u =
1

2
(I + U)x = C(C + i)−1x = Cu.

Thus A is an extension of C.
Self-adjointness of A follows from the spectral representation of U since the function

i(1 + eiθ)(1− eiθ)−1 is real valued. However, we can also proceed more directly. Note that

D(A) = D(C) + (I − T )V− = {u+ v − Tv : u ∈ D(C) and v ∈ V−},
and since v − Tv = (I − U)v, v ∈ V−, we have

A(v − Tv) = i(I + U)v = i(v + Tv).

Thus, since C†v = iv and C†Tv = −iTv,

A(u+ v − Tv) = Cu+ C†(v − Tv).

Let us see that A is symmetric. Indeed,

〈A(u+ v − Tv), u′ + v − Tv〉
= 〈Cu, u′〉+ 〈Cu, v′ − Tv′〉+

〈
C†(v − Tv), u′

〉
+
〈
C†(v − Tv), (v′ − Tv′)

〉
= 〈u,Cu′〉+

〈
u,C†(v′ − Tv′)

〉
+ 〈v − Tv, Cu′〉+ i 〈v + Tv, v′ − Tv′〉 .

The last term satisfies

i 〈v + Tv, v′ − Tv′〉 = i 〈Tv, v′〉 − i 〈v, Tv′〉 = −〈Tv, iv′〉+ 〈v, iTv′〉 = 〈v − Tv, i(v′ + Tv′)〉
since T is an isometry . Symmetry follows.

It remains to show that σ(A) ⊂ R. Suppose z ∈ C \ R. Then

A− zI = i(I + U + iz(I − U))(I − U)−1 = i((1 + iz)I + (1− iz)U)(I − U)−1.

Thus
(A− zI)−1 = −i(I − U)((1 + iz)I + (1− iz)U)−1.

The first factor is clearly bounded and the second factor is bounded since (1 + iz)/(1 − iz)
is not in the unit circle and U is unitary. Thus (A− zI)−1 is bounded.

Exercise 54. Show that any self-adjoint extension A is of the above form. (Hint: show
that the Cayley transform of A, when restricted to ran(C + i), must agree with V .) �





LECTURE 22

Self-adjoint extensions (II) and the Friedrichs extension

1. Proof that codim ran(C − z) is constant in the upper and lower half planes

Let C be a densely defined, closed symmetric operator on a Hilbert space. Let Vz =
ker(C† − z) = (ran(C − z))⊥, and define

δ(z;w) = sup
v∈Vz ;v 6=0

inf
u∈Vw

‖v − u‖
‖v‖

= sup
v∈Vz :‖v‖=1

dist(v, Vw).

Note that δ(z;w) ≤ 1. Furthermore, by Lemma 21.4 from last time, if dimVz > dimVw then
δ(z;w) = 1 since then there is v ∈ Vz ∩ V ⊥w , so that

‖v − u‖ =

√
‖v‖2 + ‖u‖2, u ∈ Vw.

Similarly, let

δ̃(w; z) = sup
v∈V ⊥w :‖v‖=1

dist(v, V ⊥z ).

Claim: δ̃(w; z) = δ(z;w).
Indeed, for any subspace X

dist(v,X) = ‖PX⊥v‖ ,
with PX⊥ = projection onto X⊥. Thus

δ̃(w; z) = sup
v∈V ⊥w :‖v‖=1

sup
u∈Vz :‖u‖=1

|〈u, v〉| = sup
u∈Vz :‖u‖=1

sup
v∈V ⊥w :‖v‖=1

|〈u, v〉| = sup
u∈Vz :‖u‖=1

dist(u, Vw) = δ(z;w).

Now consider the map

(C − w)(C − z)−1 : ran(C − z) → ran(C − w).

(Recall that ran(C − z) and ran(C − w) are closed subspaces.) Let u ∈ ran(C − z). Then

(C − w)(C − z)−1u = u+ (z − w)(C − z)−1u,

from which we conclude that∥∥(C − w)(C − z)−1u− u
∥∥ ≤ |z − w|

| Im z|
‖u‖ .

As this holds for all u ∈ ran(C − z) = V ⊥z , we conclude that if |z − w|/| Im z| < 1 then

δ(w; z) = δ̃(z;w) < 1.

Thus dimVw ≤ dimVz. Hence, if |z − w| < min(| Im z|, | Imw|) then dimVw = dimVz. It
follows that dimVz is constant as z ranges through the upper and lower half planes.

Remark. A more succinct proof codim ran(C− z) can be made using index theory. The
basic ideas are as follows:

(1) dim ker(C − z) = 0 for all z ∈ C \ R.
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(2) Thus the index of C − z,

ind(C − z) = dim ker(C − z)− codim ran(C − z) = codim ran(C − z).

This index could be infinity.
(3) There is a general theorem which states that the index of a map is “homotopy

invariant” — that is it does not change under continuous perturbations. Here we
consider C − z as a linear map from the Hilbert space D(C), with inner product
〈u, v〉+ = 〈Cu,Cv〉+〈u, v〉, into H. Thus z 7→ C−z is a continuous map from C\R
into the bounded operators from D(C)→ H. (Essentially, we proved a special case
of that theorem.)

This is all quite elementary, but we haven’t covered the relevant index theory.

2. Friedrichs extension

Definition 22.1. A symmetric operator A defined on a dense subspaceD is semibounded
if

c ‖u‖2 ≤ 〈Au, u〉
for some constant c and for all u ∈ D.

Theorem 22.1 (Friedrichs). Let A be a densely defined symmetric operator, semi-bounded
with constant c. Then A has a self-adjoint extension with σ(A) ⊂ [c,∞).

Proof. We could evaluate deficiency indices, but the point here is actually the construc-
tion. So let us proceed directly. First of all we will assume that c = 1. This can be achieved
without loss of generality by replacing A by (1− c)I + A.

The expression
〈u, v〉+ = 〈Au, v〉

defines an inner product on D(A). Furthermore

‖u‖2
+ = 〈Au, u〉 ≥ ‖u‖2

by assumption. Thus convergence in ‖·‖+ controls convergence in H. Let Q(A) denote the
Hilbert space completion of D(A) in this norm. By the norm domination, we can take this
to be a subspace of H: D(A) ⊂ Q(A) ⊂ H.

Now let x ∈ H. Then
y 7→ 〈y, x〉

is a bounded linear functional on Q(A). Thus there is a unique element x′ ∈ Q(A) such that

〈y, x〉 = 〈y, x′〉+ for all y ∈ Q(A).

Let T : H → Q(A) denote the map Tx = x′. Furthermore, considered as a map T : H → H,
T is bounded. Indeed,

‖Tx‖ ≤ ‖Tx‖+ = sup
y∈Q(A)

∣∣〈y, Tx〉+∣∣
‖y‖+

≤ sup
y

|〈y, x〉|
‖y‖

= ‖x‖

and we see that ‖T‖ ≤ 1.
Let D = ranT and define B : D → H to be the inverse map T−1. This is a good

definition since if Tx = 0 then 〈y, x〉 = 0 for all y ∈ Q(A) which is a dense subset of H
(since D(A) is) and thus x = 0. For v ∈ D we have

〈u, v〉+ = 〈u,Bv〉 for all u ∈ Q(A).



2. FRIEDRICHS EXTENSION 22-3

Thus
〈u,Bv〉 = 〈u, v〉+ = 〈v, u〉+ = 〈v,Bu〉 = 〈Bu, v〉

for u, v ∈ D. That is B is symmetric. It follows that

〈x, Ty〉 = 〈BTx, Ty〉 = 〈Tx,BTy〉 = 〈Tx, y〉
for all x, y ∈ H. Thus T is symmetric. Since T is also bounded, it is self-adjoint.

Since ‖T‖ ≤ 1 the spectrum of T is contained in [−1, 1]. However, since

〈Tx, x〉 = 〈Tx,BTx〉 = ‖Tx‖2
+ ≥ 0

we see that σ(T ) ⊂ [0, 1]. Thus for any z ∈ C \ [1,∞), (I − zT ) has a bounded inverse, and
furthermore,

(I − zT )−1T (B − z) = I = (B − z)(I − zT )−1T.

Thus σ(B) ⊂ [1,∞) ⊂ R and so B is self-adjoint.
Now if x ∈ ran(A), say x = Ax′ then

〈y, x〉 = 〈y, Ax′〉 = 〈y, x′〉+ for all y ∈ D(A).

Since D(A) is dense in Q(A) we find that

〈y, x〉 =
〈
y, A−1x

〉
+

for all x ∈ ranA and y ∈ Q(A). (Note that A is one-to-one by the assumed lower bound.)
Thus D(A) ⊂ D = ranT and

Bx′ = Ax′ for all x′ ∈ D(A).

So B extends A. �

The operator B constructed in the proof is known as the Friedrichs extension of A.

Exercise 55. Let A = − d2

dx2 on C2
c (0, 1) ⊂ L2(0, 1). Show that A is densely defined,

symmetric and non-negative (〈Au, u〉 ≥ 0). What is the Friedrich’s extension of A? Does A
have other self-adjoint extensions? If yes, what are they?
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Semigroups





LECTURE 23

Continuous and strongly continuous semigroup

Definition 23.1. A one parameter semigroup of operators is a map Z : [0,∞)→ L(X),
with X a Banach space, and such that

Z(t+ s) = Z(t)Z(s) for all t, s ≥ 0,

and with Z(0) = I.

Theorem 23.1. Let Z(t) : X → X be a one-parameter semigroup of operators that is
norm continuous of zero:

lim
t→0
‖Z(t)− I‖ = 0.

Then

(1) Z(t) is a norm continuous for all t ≥ 0.
(2) There is a bounded linear map G ∈ L(X) such that

Z(t) = etG,

where the exponential is defined by the power series

etG =
∞∑
n=0

1

n!
tnGn.

Conversely, given any bounded linear map G ∈ L(X), etG defines a norm continuous one-
parameter semigroup.

Remark. One could also define etG by the Riesz integral:

etG =
1

2πi

∮
γ

1

zI −G
etzdz.

Proof. The converse statement is a consequence of the Riesz functional calculus for
operators in a Banach algebra.

Suppose Z(t) is a one parameter semigroup continuous at 0. Since

Z(t+ h)− Z(t) = (Z(h)− I)Z(t),

we see that Z(t) is continuous at every t ≥ 0.
There is ε > 0 such that for t < ε

‖Z(t)− I‖ < 1.

We will use

Lemma 23.2. Let Z be an operator with ‖Z − I‖ < 1. Then

logZ =
∞∑
n=1

(−1)n+1

n
(Z(t)− I)n
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is a uniformly convergent series and

elogZ = Z.

Furthermore, if Z,W are operators such that

(1) ‖ZW − I‖ < 1, ‖Z − I‖ < 1, ‖W − I‖ < 1 and
(2) ZW = WZ

then

log(ZW ) = logZ + logW.

Exercise 56. Prove the lemma

It follows that

L(t) = log(Z(t)) =
∞∑
n=1

(−1)n+1

n
[Z(t)− I]n

is a uniformly convergent series t < ε,

Z(t) = eL(t)

and

L(t+ s) = L(t) + L(s)

if t+ s < ε. We conclude that for rational t < ε,

1

t
L(t)

is independent of t. Let the operator be G. So

L(t) = tG, t ∈ Q ∩ [0, ε).

By continuity

L(t) = tG ∀t ∈ [0, ε).

Thus

Z(t) = etG ∀t ∈ [0, ε).

For arbitrary t = nε+ r the result follows from the multiplicative property. �

Definition 23.2. A one parameter semigroup is strongly continuous at t = 0 if

lim
t→0
‖Z(t)x− x‖ = 0

for all x ∈ X.

Theorem 23.3. Let Z(t) be a one-parameter semigroup of operators that is strongly
continuous at t = 0.

(1) There exist constants b and k such that Z(t) is bounded in norm by

‖Z(t)‖ ≤ bekt.

(2) Z(t)x is a continuous function of t for each x ∈ X.
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Proof. Part 2 — continuity of Z(t)x for all t follows — since

Z(t+ h)x− Z(s)x = Z(s)[Z(t− s)x− x].

To prove (1) we will show first that Z(t) is uniformly bounded for t in a neighborhood
of 0. Suppose on the contrary that there is a sequence tn → 0 such that

‖Z(tn)‖ → ∞.
By the principle of uniform boundedness we conclude that

‖Z(tn)x‖ → ∞
for some x ∈ X. But Z(tn)x→ x so this is a contradiction. Thus given ε > 0,

b := sup
0≤t≤ε

‖Z(t)‖ <∞.

Clearly b ≥ 1. Now for arbitrary t = nε+ r, we have Z(t) = Z(r)[Z(ε)]n, so

‖Z(t)‖ ≤ bn+1 = ben ln b ≤ bekt,

with k = ε−1 ln b. �





LECTURE 24

Unbounded operators in a Banach space

Our main goal in the coming lectures will to be to prove a formula that is of the form

Z(t) = etG

for a strongly continuous semi-group. Clearly the operator G cannot be bounded (unless the
semi-group is in fact norm continuous). Thus we must consider unbounded operators in a
Banach space setting. So our first task is to understand some generalizations of the notion
of unbounded operators to a Banach space. The first idea — and ultimately the right one
— is to define

Gx = ∂tZ(t)x |t=0 .

However, this cannot work for every x since

Theorem 24.1. Let Z(t) be a strongly continuous semigroup on a Banach space such
that

Gx = ∂tZ(t)x |t=0

exists for every x ∈ X. Then G is bounded and Z(t) = etG is norm continuous.

Remark. This is analogous to the Hellinger-Toeplitz theorem. It shows that the genera-
tor of a semigroup that is strongly continuous but not norm continuous cannot be everywhere
defined.

Proof. Consider the family of operators

Dh =
1

h
(Z(h)− I).

Since limh→0Dhx = Gx exists for every x we see that

sup
h∈[0,1]

‖Dhx‖ ≤ c(x).

By the principle of uniform boundedness, there is a constant C such that

sup
h∈[0,1]

‖Dh‖ ≤ C.

Thus ‖G‖ ≤ C. �

The following definitions are analogous to the definitions in the Hilbert space context:

Definition 24.1. A densely defined linear operator G on a Banach space X is a linear
map G defined on a dense subspace D(G) ⊂ X called the domain of G. We say that G is
closed if the graph {(x,Gx) : x ∈ D(G)} is closed, in other words if whenever xn → x and
Gxn → y then y ∈ D(G) and Gx = y.

Let L(X) denote the set of densely defined closed linear maps of X into itself.
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Definition 24.2. Let G ∈ L(X). The resolvent set ρ(G) is the collection of complex
numbers ζ such that ζI − G maps D(G) one-to-one onto X. The spectrum of G, σ(G), is
the complement of the resolvent set.

If ζ ∈ ρ(G) then ζI −G is invertible, it’s inverse

R(ζ) = (ζI −G)−1

is an everywhere defined closed linear map and is thus bounded by the closed graph theorem.

Definition 24.3. Let Z(t) be a strongly continuous one parameter semi-group on a
Banach space X. The infinitesimal generator of Z(t) is the linear map

Gu = lim
t→0

1

t
[Z(t)u− u] ,

defined on the domain D(G) consisting of vectors u such that the right hand side exists (in
norm).

Theorem 24.2. Let G be the infinitesimal generator of a strongly continuous semi-group.
Then G ∈ L(X). Furthermore

(1) Z(t) : D(G)→ D(G) and G commutes with Z(t).
(2) For each n ≥ 0, Gn is densely defined.
(3) If ‖Z(t)‖ ≤ bekt then all complex numbers ζ with Re ζ > k belong to ρ(G).
(4) The resolvent of G is the Laplace transform of Z(t),

R(ζ) := (ζI −G)−1 =

∫ ∞
0

e−ζtZ(t)dt.

Proof. Recall that we showed that Z(t) is strongly continuous and bounded by ‖Z(t)‖ ≤
bekt for suitable b, k. Thus

I(t)x =

∫ t

0

Z(s)xds

defines a bounded operator, with the integral on the l.h.s. a Riemann integral.
Claim: I(t) : X → D(G).
Indeed,

1

h
[Z(h)− I] I(t)x =

1

h

∫ t

0

[Z(s+ h)x− Z(s)x] ds =
1

h

∫ t+h

t

Z(s)xds− 1

h

∫ h

0

Z(s)xds.

It follows that I(t)x ∈ D(G) and

GI(t)x = Z(t)x− x.

In particular, since limt→0 I(t)x = x we see that D(G) is dense.
Now since

1

h
[Z(t+ h)− Z(t)]x = Z(t)

1

h
[Z(h)− I]x =

1

h
[Z(h)− I]Z(t)x

we see that Z(t) maps D(G)→ D(G) and

d

dt
Z(t)h = Z(t)Gx = GZ(t)x.
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for such x. (1) follows as does the identity

Z(t)x− x =

∫ t

0

Z(s)Gxds

for x ∈ D(G).
Now suppose xn ∈ D(G) and xn → x and Gxn → y. Then

Z(t)xn − xn =

∫ t

0

Z(s)Gxnds.

Taking limits on both sides we conclude that

Z(t)x− x =

∫ t

0

Z(s)yds.

Dividing by t and taking the limit t → 0 we see that x ∈ D(G) and Gx = y. That is G is
closed.

Similarly, if φ : (0,∞)→ R is infinitely differentiable and compactly supported then we
may define

Iφx =

∫ ∞
0

φ(s)Z(s)xds.

Arguing as above we conclude that Iφ : X → D(G) and

GIφx = −
∫ ∞

0

φ′(s)Z(s)xds = −Iφ′x.

Thus ran Iφ ⊂ D(Gn). Taking φj → δ with φj C
∞ we see that D(Gn) is dense.

Now suppose Re ζ > k with k as in part (3). Then

L(ζ)x =

∫ ∞
0

e−ζtZ(t)xdt

is a convergent (improper) integral. Since

1

h
[Z(h)− I]L(ζ)x =

1

h

∫ ∞
0

e−ζt [Z(t+ h)− Z(t)]xdt

= −1

h

∫ h

0

Z(t)xdt+
1

h

∫ ∞
h

[
e−ζ(t−h) − e−ζt

]
Z(t)xdt.

→ −x+

∫ ∞
0

ζe−ζtZ(t)xdt.

It follows that L(ζ)x ∈ D(G) and

GL(ζ)x = −x+ ζL(ζ)x.

Likewise,
L(ζ)Gx = −x+ ζL(ζ)x.

Thus ζ ∈ ρ(G) and
R(ζ) = L(ζ). �





LECTURE 25

The Hille-Yosida theorem

Theorem 25.1. Let Z(t) and Z̃(t) be strongly continuous semigroups with generators G

and G̃. If G = G̃ then Z(t) = Z̃(t) for all t ≥ 0.

Proof. Let G = G̃ and let x ∈ D(G). Then

∂tW (t)Z(s− t)x = W (t)GZ(s− t)x−W (t)GZ(s− t)x = 0.

It follows that

W (s)x− Z(s)x =

∫ s

0

∂tW (t)Z(s− t)x = 0.

Since W (s) and Z(s) are bounded and agree on the dense set D(G), they are equal. �

We now turn our attention to semigroups which satisfy

‖Z(t)‖ ≤ e−kt

with some k ∈ R. Since ektZ(t) is a semi-group, it suffices to consider

‖Z(t)‖ ≤ 1,

that is Z(t) is a semi-group of contractions.

Theorem 25.2 (Hille-Yosida). Let Z(t) be a strongly continuous semigroup of contrac-
tions with generator G. Then

(1) (0,∞) ⊂ ρ(G), and
(2) for any λ ∈ (0,∞) ∥∥(λI −G)−1

∥∥ ≤ 1

λ
.

Conversely, if G ∈ L(X) satisfies (1), (2) then it is the generator of a strongly continuous
semigroup.

Proof. We proved (1) and (2) last time under the more general condition that ‖Z(t)‖ ≤
be−kt. Recall

(λI −G)−1 =

∫ ∞
0

e−λtZ(t)dt.

Turning to the converse, let R(n) = (nI −G)−1. We begin by showing that

lim
n
nR(n)x = x

for all x ∈ X. To see this, note that

nR(n)− I = R(n)G.

Thus for x ∈ D(G)

‖nR(n)x− x‖ ≤ 1

n
‖Gx‖ .
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Thus nR(n)x→ x for all x ∈ D(G). By an ε/2 argument it follows that nR(n)x→ x for all
x ∈ X.

Now let
Gn = nGR(n).

Since
Gn = n2R(n)− nI,

we see that Gn is bounded
‖Gn‖ ≤ 2n.

Note that
Gx = lim

n
Gnx x ∈ D(G).

Consider the semigroups Zn(t) = etGn ,

Zn(t) = e−ntetn
2R(n) = e−nt

∞∑
m=0

(n2t)m

m!
[R(n)]m .

Thus

‖Zn(t)‖ ≤ e−nt
∞∑
m=0

(n2t)m

m!

1

nm
= e−ntent = 1.

Fix n,m integers and let x ∈ D(G). Consider

∂tZn(s− t)Zm(t)x = Zn(s− t)(Gn −Gm)Zm(t)x = Zn(s− t)Zm(t)(Gn −Gm)x,

where in the last step we have noted that Gn and Gm commute with Zm(t). Integrating over
t from 0 to s we see that

Zm(s)x− Zn(s)x =

∫ s

0

Zn(s− t)Zm(t)(Gn −G)xds.

Thus
‖Zm(s)x− Zn(s)x‖ ≤ s ‖Gnx−Gmx‖ .

Since Gnx→ Gx we see that Zn(s)x is a Cauchy sequence. Denote it’s limit by Z(s)x. The
operator Z(s) extends to all of X by an approximation argument since

‖Z(s)x‖ ≤ ‖x‖ x ∈ D(G).

As the Cauchy estimate is locally uniform in s, we get uniform convergence of Zn(s)x→
Z(s)x. Thus Z(s) is strongly continuous. Clearly Z(s) = I. Finally

Z(t+ s)x = lim
n
Zn(t)Zn(s)x = Z(t)Z(s)x

so Z is a semi-group. Clearly ‖Z(t)‖ ≤ 1.
It remains to show that G is the generator of Z(t). Since

Zn(t)x− x =

∫ t

0

Zn(s)Gnxds.

Suppose x ∈ D(G). Then

Z(t)x− x =

∫ t

0

Z(s)Gxds.

It follows that the generator H of Z(t) extends G, that is D(G) ⊂ D(H) and Hx = Gx for
all x ∈ D(G). By the theorem of last lecture, all ζ with Re ζ > 0 are in the resolvent set of
H. Since ζI −G is surjective and ζI −H is one-to-one it follows that D(G) = D(H). �
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Theorem 25.3 (Lumer-Phillips). Let G be a densely defined operator on a Hilbert space
H whose resolvent set includes [0,∞). Then G is the generator of a semigroup of contractions
if and only if G is “dissipative:”

Re 〈Gx, x〉 ≤ 0

for all x ∈ D(G).

Proof. Suppose Re 〈Gx, x〉 ≤ 0 for all x ∈ D(G). Since

‖λx−Gx‖2 = λ2 ‖x‖2 + ‖Gx‖2 − 2 Re 〈Gx, x〉 ,
we conclude that

‖x‖2 ≤ 1

λ2
‖λx−Gx‖2

for all x ∈ D(G). It follows that

‖R(λ)x‖ ≤ 1

λ
‖x‖ for all x,

which is ‖R(λ)‖ ≤ 1/λ.
Conversely, if ‖R(λ)‖ ≤ 1/λ then

‖x‖2 ≤ 1

λ2
‖λx−Gx‖2

for all x ∈ D(G). Cancelling ‖x‖2 from both sides, we conclude that

2 Re 〈Gx, x〉 ≤ 1

λ2
‖Gx‖2 . �





LECTURE 26

Unitary semigroups and self-adjoint semigroups

A particular example of a contractive semigroup is a unitary semigroup U(t). In fact,
since a unitary operator is invertible, we can extend a unitary semigroup to be a one-parameter
Unitary group by setting U(−t) = U(t)−1 = U(t)† for t < 0.

Theorem 26.1 (Stone and von-Neumann). Let U(t) be strongly continuous unitary
group, with generator

G = lim
h→0

[U(h)x− x] , (?)

on the domain such that the limit on the r.h.s. exists. Then −iG is self adjoint. Conversely,
if A is a self-adjoint operator then iA is the generator of a strongly continuous unitary group.

Proof. Let U(t) be a unitary group. Then Z(t) = U(t), t > 0, is a contractive semi-
group, so it has a generator G defined by (?) with a one-sided limit on the r.h.s.. Since
Z(t)† = U(−t) is also a contractive semi-group, it has a generator which we easily see to be
−G:

lim
h→0

1

h
[U(−h)x− I] = lim

h→0
U(−h) [x− U(h)x] = −Gx

for x ∈ D(G). By the Hille-Phillips theorem (0,∞) ⊂ ρ(G). Likewise (0,∞) ⊂ ρ(−G). Let
A = −iG. Thus iR \ {0} ⊂ ρ(A). Since A is closed and densely defined, to see that it is
self-adjoint we need only show that it is symmetric. This, however follows since

〈Ax, y〉 = −i 〈Gx, y〉 = −i lim
h→0

1

h
[〈U(h)x, y〉 − 〈x, y〉]

= −i lim
h→0

1

h
[〈x, U(−h)y〉 − 〈x, y〉] = i 〈x,Gy〉 = 〈x,Ay〉 . (26.1)

Now let A be a self-adjoint operator. Then C \ R ⊂ ρ(A) and∥∥(ζI − A)−1
∥∥ ≤ 1

| Im ζ|
.

It follows from the Hille-Phillips theorem that iA and −iA generate contractive semigroups.
Let them U(t) and V (t) respectively. It follows that

d

dt
V (t)U(t)x = iV (t)AU(t)x− iV (t)AU(t)x = 0,

for x ∈ D(A). Since V (0)U(0)x = x we see that V (t)U(t)x = x for all t ≥ 0. Similarly
U(t)V (t)x = x for all t ≥ 0. Since U(t) and V (t) are bounded operators it follows that
U(t)V (t)x = V (t)U(t)x = x for all x ∈ H. That is V (t) = U(t)−1. Thus U(t) can be
extended to one-parameter group by setting

U(t) = V (−t) for t < 0.
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Clearly,

iAx = lim
h→0

1

h
[U(h)x− x]

for all x ∈ D(A). It remains to show that U(t) is unitary. For this purpose, we compute

d

dt
‖U(t)x‖2 = 〈−iAU(t)x, U(t)x〉+ 〈U(t),−iAU(t)x〉 = 0

for x ∈ D(A). It follows that ‖U(t)x‖ = ‖x‖ for all x ∈ H. �

Theorem 26.2. G ∈ L(H), with H a Hilbert space, is the generator of a strongly con-
tinuous semi-group of self-adjoint operators if and only it is self-adjoint and bounded from
above.

Proof. Suppose Z(t) is a strongly continuous semigroup of self-adjoint operators with
generator G. Let x, y ∈ D(G). Then

〈Gx, y〉 = lim
t↓0

t−1[〈Z(t)x, y〉 − 〈x, y〉] = lim
t↓0

t−1[〈x, Z(t)y〉 − 〈x, y〉] = 〈x,Gy〉 .

Thus G is symmetric. We have seen that there are b, k such that ‖Z(t)‖ ≤ bekt and that any
ζ with Re ζ > k is in ρ(G), since

(ζI −G)−1 =

∫ ∞
0

e−ζtZ(t)dt.

Thus the deficiency indices of G are both zero so G is self-adjoint. It follows from the spectral
representation of G that

〈Gx, x〉 ≤ k ‖x‖2 ,

so G is bounded from above.
Now suppose G is self-adjoint and bounded from above. Then etG is well defined by the

continuous functional calculus

etGx =

∫ k

−∞
etλdE(λ)x,

where k is an upper bound for G. It follows from the functional calculus that this defines a
self-adjoint semigroup which is easily seen to be strongly continuous.

Exercise 57. Show that G is the generator of etG. �



Part 4

Perturbation Theory





LECTURE 27

Rellich’s Theorem

Theorem 27.1. Let A be a self-adjoint operator in a Hilbert space H with domain D(A).
If T is a symmetric operator on H,

(1) D(T ) ⊃ D(A), and
(2) there are b < 1 and a > 0 such that

‖Tu‖ ≤ a ‖u‖+ b ‖Au‖ ,
then A+ T is self-adjoint on the domain D(A).

Remark. If T is bounded then we may take b = 0 so A+ T is self-adjoint.

Proof. It is clear that A + T is densely defined and symmetric. Let us show that it is
closed. To this end note that by the triangle inequality

‖Au‖ ≤ ‖(A+ T )u‖+ ‖Tu‖ ≤ ‖(A+ T )u‖+ a ‖u‖+ b ‖Au‖
for all u ∈ D(A). Thus,

‖Au‖ ≤ 1

1− b
‖(A+ T )u‖+

a

1− b
‖u‖ , u ∈ D(A).

If un ∈ D(A) converges to u and (A + T )un converges to v we see that Aun is a Cauchy
sequence. Since A is closed, we conclude that u ∈ D(A) and Au = limnAun. Since

‖Tu− Tun‖ ≤ a ‖u− un‖+ b ‖A(u− un)‖ → 0

we see that Tun → Tu and thus that (A+ T )u = v so A+ T is closed.
To complete the proof of self-adjointness it suffices to show that ±ic ∈ ρ(T +A) for some

c > 0. Let c ∈ R\{0}. Since A+T is closed and symmetric A+T +ic maps D(A) one-to-one
and onto a closed subspace of H. Suppose v ⊥ ran(A+ T + ic):

〈(A+ T + ic)u, v〉 = 0 for all u ∈ D(A).

Since A is self-adjoint, ran(A+ iC) = H and there is w ∈ D(A) with Aw + icw = v. Thus

〈Aw + icw,Aw + icw〉+ 〈Tw,Aw + icw〉 = 0,

so
‖(A+ ic)w‖2 ≤ ‖Tw‖ ‖Aw + icw‖ ,

and
‖(A+ ic)w‖ ≤ ‖Tw‖ ≤ a ‖w‖+ b ‖Aw‖ .

Since A is self-adjoint we find that

‖Aw‖2+c2 ‖w‖2 ≤ a2 ‖w‖2+b2 ‖Aw‖2+2ab ‖w‖ ‖Aw‖ ≤
(
a2 +

ab

ε

)
‖w‖2+

(
b2 + abε

)
‖Aw‖2 .

‖Aw‖2 + c2 ‖w‖2 + 〈Tw,Aw〉 − ic 〈Tw,w〉 = 0.
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Choose ε small enough that b2 + abε < 1 and choose c2 > a2 + ab
ε
. Then w = 0 so v = 0

and ran(A + T + ic) = H. Since there are positive and negative choices for c the deficiency
indices of A+ T are both 0 and it is self-adjoint. �

Proposition 27.2. Let n = 1, 2, 3 or 4 and let A = −∆ on L2(Rn). Suppose Tf(x) =
V (x)f(x) with V ∈ L2(Rn) +L∞(Rn) and real valued. Then A+T = −∆ +V is self-adjoint
on the domain D(A) of −∆.

Proof.

Lemma 27.3. For any n, −∆ is self-adjoint on the domain H2 = {f ∈ L2(Rn) : ∂i∂jf ∈
L2 i, j = 1, . . . , 3}.

Proof. It is a standard exercise to show that

∂̂i∂jf(k) = −4π2kikj f̂(k),

where f̂ denotes the Fourier transform of f . In particular

−̂∆f(k) = 4π2 |k|2 f̂(k).

Since Fourier transform is an isometry L2 → L2, we conclude that −∆ is self-adjoint on the
domain

H2 = {f : |k|2 f̂(k) ∈ L2},
and that this domain is equal to the set given in the Lemma. �

Lemma 27.4. Let V ∈ L2 + L∞. Given ε > 0 there are are V2 ∈ L2 and V∞ ∈ L∞ such
that V = V2 + V∞ and

‖V2‖2 < ε.

Exercise 58. Prove this lemma.

Now given V ∈ L2 + L∞, let V2,∞ be as in the Lemma with ε to be chosen below. Then

‖V f‖2 ≤ ‖V∞f‖2 + ‖V2f‖2 ≤ ‖V∞‖∞ ‖f‖2 + ‖V2‖2 ‖f‖∞
for any f ∈ L2 ∩ L∞. However, for n = 1, 2, 3, or 4 the Sobolev inequalities show that

‖f‖∞ ≤ cn ‖−∆f‖2 .

In particular D(−∆) ⊂ L∞ ∩ L2 and

‖V f‖ ≤ a ‖f‖2 + b ‖−∆f‖2 ,

with a = ‖V∞‖∞ and b = εcn, with ε chosen so that b < 1. Thus the hypotheses of Rellich’s
theorem are satisfied and T + V is self-adjoint. �

Example. The operator

−∆ +
1

|x|
on L2(R3) is the “Hamiltonian for the Hydrogen atom,” in suitable units. This is a funda-
mental operator in quantum mechanics and the above proposition shows it to be self-adjoint
since 1/|x| is locally L2 and bounded at ∞.

Proposition 27.5. Let A = −∆ on L2(Rn) and let T = a(x) · ∇−∇ · a(x) with a(x) a
real valued vector field on Rn with components in L∞(Rn) and such that ∇ · a ∈ L∞. Then
A+ T is self adjoint on H2 = D(A).
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Proof.

‖Tf‖2 ≤ 2 ‖a · ∇f‖2 + ‖∇ · a‖ ‖f‖2 ≤ 2 ‖a‖∞ ‖∇f‖2 + ‖∇ · a‖∞ ‖f‖2 .

Now

‖∇f‖2
2 = 〈−∆f, f〉 ≤ ‖−∆f‖ ‖f‖ ≤ ε ‖−∆f‖2 +

1

ε
‖f‖2 .

Thus
‖Tf‖2 ≤ b ‖−∆f‖2 + a ‖f‖2 ,

where we may choose b as small as we like. �

When the estimate
‖Tx‖ ≤ a ‖x‖+ b ‖Ax‖

holds, we say that T is A-relatively bounded. The A-relative bound of T is the infimum
over b such that the inequality holds for some a. In the last example T has relative bound
0. Thus Rellich’s theorem says that if T is symmetric with A-relative bound < 1 and A is
self-adjoint then T + A is self-adjoint.

The notion of relative bound holds for densely defined closed operators in a Banach space,
but is not as useful. We do have, however,

Theorem 27.6. Let A ∈ L(X) and let T be densely defined with D(T ) ⊃ D(A). If T
is A-relatively bounded with relative bound < 1 then A + T defined on the domain D(A) is
closed.

Proof. As in the self-adjoint case. �





LECTURE 28

Perturbation of eigenvalues

Throughout this lecture, let H be a Hilbert space and let A ∈ L(H) be a closed densely
defined operator.

Proposition 28.1. If ζ ∈ σ(A) is an isolated point, so {0 < |z − ζ| < r} ⊂ ρ(A) for
some r > 0, then

Q =
1

2πi

∮
|z−ζ|= r

2

(zI − A)−1dz,

is a bounded projection (Q2 = Q). Furthermore

(1) ranQ ⊂ D(A),
(2) AQx = QAx, for x ∈ D(A)
(3) AQ is bounded
(4) σ(A|ranQ) = {ζ}.

Proof. The proofs that Q is a bounded projection and of 1, 2, and 3 are left as exercises.
That σ(A|ranQ) = {ζ} follows since for w 6= ζ we have

(wI − A)
1

2πi

∮
|z−ζ|=ε

1

w − z
(zI − A)−1dz = Q

with ε sufficiently small that w is outside the contour. �

Definition 28.1. Let ζ ∈ σ(A) be an isolated point. We will say that ζ is a non-
degenerate eigenvalue if dim ranQ = 1.

Note that if dim ranQ = 1 then AQ = ζQ so ζ is indeed an eigenvalue. Likewise if
dim ranQ <∞ then ζ is an eigenvalue. (If dim ranQ =∞ then ζ may not be an eigenvalue
— recall the example of the Volterra operator.)

Proposition 28.2. Let ζ be an isolated non-degenerate eigenvalue of A then ζ∗ is an
isolated non-degenerate eigenvalue of A† and if φ, ψ are corresponding non-zero eigenvectors,

Aφ = ζφ, A†ψ = ζ∗ψ,

then 〈φ, ψ〉 6= 0.

Proof. We have already seen that σ(A†) = σ(A)∗. Thus ζ∗ is an isolated point of σ(A†).
Shifting and scaling we may assume without loss that ζ = 0 and that {0 < |z| ≤ 1} ⊂ ρ(A).
Since ranQ = spanφ, we have

Qu = 〈Qu, φ〉φ =
〈
u,Q†φ

〉
φ

for all u ∈ H. Let ψ = Q†φ, so Q = 〈·, ψ〉φ. Since Q 6= 0, ψ 6= 0. Furthermore, since

Q† = − 1

2πi

∮
|z|=1

(z∗I − A†)−1dz∗ =
1

2πi

∮
|z|=1

(zI − A†)−1dz

28-1
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is the Riesz projection of A†, it follows that ψ ∈ D(A†) and〈
u,A†ψ

〉
=
〈
u,Q†A†ψ

〉
=
〈
Qu,A†ψ

〉
= 〈AQ,ψ〉 = 0

for all u ∈ H. Thus A†ψ = 0, so 0 is an eigenvalue of A†. Since

Q† = 〈·, φ〉ψ,
we see that dim ranQ† = 1. Finally,

〈φ, ψ〉 =
〈
φ,Q†φ

〉
= 〈Qφ, φ〉 = ‖φ‖2 6= 0. �

Theorem 28.3. Let A ∈ L(H), H a Hilbert space, and let T be densely defined and
A-relatively bounded. Suppose A has an isolated non-degenerate eigenvalue ζ0. Then for
sufficiently small κ the operator A + κT has a unique isolated non-degenerate eigenvalue
ζ(κ) in a neighborhood of ζ0 and the map κ 7→ ζ(κ) is analytic. Furthermore, if φ0 and ψ0

are eigenvectors of A and A†,

Aφ0 = ζ0ψ0, Aψ0 = ζ∗0ψ0,

normalized so that 〈φ0, ψ0〉 = 1, there is an H-valued analytic map κ 7→ φκ such that

Aφκ + κTφκ = ζ(κ)φκ

and

(1) φκ = φ0 + κ(ζ0I − A)−1(I − Q)Tφ0 + O(κ2), where Q is the Riesz projection Q =
〈·, ψ0〉φ0,

(2) ζ ′(0) = 〈Tφ0, ψ0〉, and
(3) ζ ′′(0) = 〈T (ζ0I − A)−1(I −Q)Tφ0, ψ0〉 .

Remark. Note that I −Q : D(A)→ D(A) and that

A(I −Q) = (I −Q)A.

Exercise 59. Show that ζ0 6∈ σ(A|ran I−Q), and that

(ζ0I − A|ran I−Q)−1(I −Q) =
1

2πi

∮
|z−ζ0|= r

2

1

z − ζ0

(zI − A)−1dz.

Proof. By shifting and scaling, we may assume that ζ0 = 0 and {0 < |z| < 2} ⊂ ρ(A).
For sufficiently small κ, κT has A-relative bound less than 1, so A+κT is closed. Let |z| = 1.
Then for∥∥T (zI − A)−1

∥∥ ≤ a
∥∥(zI − A)−1

∥∥+ b
∥∥A(zI − A)−1

∥∥ ≤ (a+ 1) max
|z|=1

∥∥(zI − A)−1
∥∥+ b.

So for sufficiently small κ, z ∈ ρ(A+ κT ) and

(zI − A− κT )−1 =
∞∑
n=0

κn(zI − A)−1
[
T (zI − A)−1

]n
is analytic in κ. It follows that the family of Riesz projections

Qκ =
1

2πi

∮
|z|=1

(zI − A− κT )−1dz

is an analytic family of projections.

Exercise 60. Show that dimQκ is independent of κ. (Hint: look at the proof of the
constancy of deficiency indices.)
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Thus for small enough κ, Qκ is a rank one projection and A + κT has an isolated non-
degenerate eigenvalue in the disk |z| < 1. Let ζ(κ) be the eigenvalue and

φκ = Qκφ0

be the eigenvector. (Note that Qκφ0 6= 0 for small κ.) So φκ is an analytic family of vectors
and

(A+ κT )φκ = ζ(κ)φκ,

which shows that ζ(κ) is analytic.
The Neumann series gives explicitly

φκ = φ0 + κφ1 + κ2φ2 +O(k3),

where

φ1 =
1

2πi

∮
|z|=1

(zI − A)−1T (zI − A)−1φ0 =
1

2πi

∮
|z|=1

1

z
(zI − A)−1Tφ0 = −A−1(I −Q)Tφ0,

and φ2 ∈ D(A) could be computed from the second order term. Since (A+ κT )φκ = ζ(κ)φκ
it follows that

ζ ′(0)φ0 = Aφ1 + Tφ0 = Tφ0 − (I −Q)Tφ0 = QTφ0,

so
ζ ′(0) = 〈Tφ0, ψ0〉 .

Likewise
1

2
ζ ′′(0)φ0 = Tφ1 + Aφ2 − ζ ′(0)φ1.

Thus

ζ ′′(0) = 2 〈Tφ1, ψ0〉+ 2 〈Aφ2, ψ0〉 − 2ζ ′(0) 〈φ1, ψ0〉 = −2
〈
TA−1(I −Q)Tφ0, ψ0

〉
. �
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