1. (4 points) Find the most general antiderivative of $f(x)=x+2 \sin x$.

Solution:

$$
\int x+2 \sin x d x=\frac{x^{2}}{2}-2 \cos x+C
$$

2. (4 points) Evaluate: $\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x$.

Solution:

$$
\begin{aligned}
\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x & =\int_{1}^{9} \sqrt{x}-\frac{1}{\sqrt{x}} d x \\
& =\int_{1}^{9} x^{1 / 2}-x^{-1 / 2} d x \\
& =\left[\frac{2}{3} x^{3 / 2}-2 x^{1 / 2}\right]_{1}^{9} \\
& =\left[\frac{2}{3}(27)-2(3)\right]-\left[\frac{2}{3}-2\right]=14-\frac{2}{3}
\end{aligned}
$$

3. (6 points) Solve the initial value problem: $\quad \frac{d y}{d x}=5 x^{4}-2 x^{5}, \quad y(0)=4$

Solution:

$$
\begin{aligned}
& y=x^{5}-\frac{x^{6}}{3}+C \\
& 4=0-0+C \\
& y=x^{5}-\frac{x^{6}}{3}+4
\end{aligned}
$$

4. (8 points) Find the absolute maximum and absolute minimum values of

$$
f(x)=5+27 x-x^{3}
$$

on the interval $[0,4]$.

Solution:

$$
f^{\prime}(x)=27-3 x^{2}=3(3-x)(3+x)
$$

So $x=3$ is a critical point in $[0,4]$. Therefore by examining

$$
\begin{aligned}
& f(0)=5 \\
& f(3)=5+81-27=59 \\
& f(4)=5+108-64=49
\end{aligned}
$$

we find 5 is the absolute minimum and and 59 is the absolute maximum
5. (6 points) Let $F(x)=\int_{x^{3}}^{4} \frac{1}{t^{2}+2} d t$. Find $F^{\prime}(x)$ without actually finding $\mathbf{F}(\mathbf{x})$.

Solution:

$$
\begin{aligned}
F(x) & =\int_{x^{3}}^{4} \frac{1}{t^{2}+2} d t \\
F(x) & =-\int_{4}^{x^{3}} \frac{1}{t^{2}+2} d t \\
F^{\prime}(x) & =-\left[\frac{1}{\left(x^{3}\right)^{2}+2}\right] \cdot\left(3 x^{2}\right) \\
F^{\prime}(x) & =\frac{-3 x^{2}}{x^{6}+2}
\end{aligned}
$$

6. Suppose: $\quad f(x)=\frac{x^{2}}{\sqrt{x+1}}, \quad f^{\prime}(x)=\frac{x(3 x+4)}{2(x+1)^{3 / 2}}, \quad f^{\prime \prime}(x)=\frac{3 x^{2}+8 x+8}{4(x+1)^{5 / 2}}$
(a) (1 point) What is the domain for f ?

Solution: $x>-1$ or $(-1, \infty)$
(b) (3 points) Write the equations for all vertical, horizontal, and slant asymptotes, if they exist.

Solution:

$$
\begin{gathered}
V A: x=-1 \\
H A: N O N E \\
S A: N O N E
\end{gathered}
$$

(c) (4 points) Identify the intervals over which $f(x)$ is increasing / decreasing.
Solution: On its domain f^{\prime} is never undefined and only 0 when $x=0$. Using a number line and testing values we find

and so f is decreasing on $(-1,0)$ and increasing on $(0, \infty)$.
(d) (4 points) Identify the intervals over which $f(x)$ is concave up / concave down.

Solution: On its domain $f^{\prime \prime}$ is never undefined and never 0 . Again, using a number line and testing values we find

and so f is never concave down and concave up on $(-1, \infty)$.
(e) (2 points) Sketch the curve of $y=f(x)$. Parts (a)-(c) may be helpful.

Solution:

7. A cylinder is inscribed in a right circular cone with a height of 10 cm and a radius (at the base) of 5 cm .
(a) (6 points) Express the volume of the cylinder V in terms of its radius r only.

Solution: Use the volume equation for a cylinder

$$
V=h\left(\pi r^{2}\right)
$$

And the fact that the cylinder is inscribed in the cone results in $h=10-2 r$ so therefore

$$
V=\pi(10-2 r) r^{2}=\pi\left(10 r^{2}-2 r^{3}\right) \quad(\text { for } r \in[0,5])
$$

(b) (8 points) Find the maximum volume of such a cylinder. Include units! Use techniques of calculus to justify that your answer is a maximum.

Solution: First search for critical points

$$
\begin{aligned}
V^{\prime} & =\pi\left(20 r-6 r^{2}\right) \\
0 & =\pi\left(20 r-6 r^{2}\right) \\
6 r & =20 \\
r & =10 / 3
\end{aligned}
$$

Now using the closed interval method we have

$$
\begin{aligned}
V(0) & =0 \\
V(10 / 3) & =\pi(10(100 / 9)-2(1000 / 27) \\
V(5) & =0
\end{aligned}
$$

And so $V=\pi\left(\frac{1000}{9}-\frac{2000}{27}\right) \mathrm{cm}^{3}$ is the maximum.
8. (4 points) Use a linear approximation to estimate $\sqrt{35}$.
A. $6-\frac{1}{4}$
B. $6-\frac{1}{8}$
C. $6-\frac{1}{9}$
D. $6-\frac{1}{12}$
E. $6-\frac{1}{20}$
9. (4 points) If $f(x)=x^{2}-3 x$, which of the following statements is true by the Mean Value Theorem?
A. There is a value c in the interval $(0,4)$ such that $f(c)=1$.
B. There is a value c in the interval $(0,4)$ such that $f^{\prime}(c)=1$.
C. There is a value c in the interval $(0,4)$ such that $f(c)=4$.
D. There is a value c in the interval $(0,4)$ such that $f^{\prime}(c)=4$.
E. The Mean Value Theorem cannot be applied.
10. (4 points) Calculate $\int_{0}^{5}|x-2| d x$. Hint: Sketch a graph.
A. $\frac{13}{2}$
B. $\frac{25}{2}-10$
C. $\frac{5}{2}$
D. $\frac{3}{2}$
E. None of the above
11. (4 points) Compute $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+3 x}-2 x\right)$
A. 0
B. $\frac{3}{4}$
C. 2
D. $\sqrt{3}$
E. ∞
12. (4 points) What is the horizontal asymptote of $f(x)=\frac{(3 x-1)(x-2)}{(x+1)(2 x)}$?
A. The function does not have a horizontal asymptote.
B. $y=3$
C. $x=3$
D. $y=\frac{3}{2}$
E. $x=\frac{3}{2}$
13. (4 points) The graph of a function $f(x)$ is shown below. What is the value of $\int_{0}^{3} f(x) d x$?
A. 0
B. 1
C. 2
D. 3
E. 4

14. (4 points) Evaluate the sum $\sum_{i=1}^{30}(3+2 i)$
A. 1020
B. 930
C. 990
D. 555
E. 63
15. (4 points) Use Newton's Method to approximate a solution to the equation $x^{5}+x=35$ starting with $x_{1}=2$. Then $x_{2}=$?
A. $x_{2}=-79$
B. $x_{2}=83$
C. $x_{2}=81$
D. $x_{2}=161 / 81$
E. $x_{2}=163 / 81$
16. (4 points) Find the slant asymptote of $y=\frac{x^{2}+5 x+2}{x-1}$
A. $y=x-1$
B. $y=x+5$
C. $y=x-5$
D. $y=x+6$
E. $y=x+3$

More Challenging Question(s). Show all work to receive credit.
17. The graph of the first derivative $\mathbf{f}^{\prime}(\mathbf{x})$ is shown below.

(a) (4 points) List the critical points of $f(x)$ and determine if each is a local maximum, local minimum, or neither.

Solution: The critical points are $x=a$ and $x=d$. Because f^{\prime} goes from positive to negative at $x=a$ we know this is a local maximum (by first derivative test) and because f^{\prime} goes from negative to positive at $x=d$ it must be a local minimum.
(b) (4 points) List the inflection points of $f(x)$.

Solution: Inflection points of f are at $x=b$ and $x=e$ as this is where the $f^{\prime \prime}$ (the slope of f^{\prime}) changes signs.
(c) (2 points) (Circle one) True $f(b)>f(d)$.
(d) (4 points) Sketch a graph of $f(x)$ given that $f(0)=1$.

