
MTH 234 Solutions to Exam 2 April 8th, 2019

1. (7 points) Let f(x, y) = x2 +3xy+y2 +y. Find and classify each critical point of f as a local minimum,
a local maximum, or a saddle point.

Solution:

fx = 2x+ 3y fy = 3x+ 2y + 1

fxx = 2 fxy = 3 fyy = 2

Both fx = 0 and fy = 0 only at (−3/5, 2/5). Using the second derivative test we have

D = 2(2)− 32 = 4− 9 = −5 < 0

So therefore (−3/5, 2/5) is a saddle point.

2. (7 points) Express the volume of the solid that lies within both the cylinder x2 + y2 = 1 and the sphere
x2 + y2 + z2 = 4 as an integral using cylindrical coordinates and evaluate it.

Solution: The sphere can be expressed as z = ±
√

4− x2 − y2 = ±
√

4− r2. So the volume can be
expressed in cylindrical coordinates as:

V =

∫∫∫
1 dV =

∫ 2π

0

∫ 1

0

∫ √4−r2
−
√
4−r2

r dz dr dθ

= 2π

∫ 1

0

2r
√

4− r2 dr

= 4π
[−1

3
(4− r2)3/2

]1
0

=
4π

3

[
8− 33/2

]

?
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3. Let F(x, y) = yzi + xzj + (xy + 2z)k and answer the following questions

(a) (7 points) Find a function f so that ∇f = F.

Solution: One possible answer is f = xyz + z2. Can check that

fx = yz fy = xz fz = xy + 2z

(b) (4 points) Let C be a curve given by vector equation C : r(t) = cos(t)i+ sin(t)j+ 2t
π
k, t ∈ [0, π/2].

Evaluate the integral ∫
C

yz dx+ xz dy + (xy + 2z) dz.

Solution: r(0) = 〈1, 0, 0〉 and r(π/2) = 〈0, 1, 1〉 so by the fundamental theorem of line integrals∫
C

yz dx+ xz dy + (xy + 2z) dz = f(0, 1, 1)− f(1, 0, 0)

= 1− 0 = 1

(c) (3 points) Let line segment C1 in R3 go from P (1, 0, 0) to R(1, 1, 1), and line segment C2 go from
R to Q(0, 1, 1). Evaluate the integral.∫

C1∪C2

yz dx+ xz dy + (xy + 2z) dz.

Solution: Because the paths start and end at the same points as (b) we know conservative vector
field have path independent line integrals so the answer must also be 1.
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4. (7 points) The solid D lies above the cone z =
√
x2 + y2 and below the sphere x2 + y2 + z2 = 4.

Use spherical coordinates to evaluate the integral

∫∫∫
D

z dV of the height function z over the solid D.

Solution: The sphere can be expressed as ρ2 = 4 =⇒ ρ = 2. The cone can be expressed as

z =
√
r2

z = r

ρ cosφ = ρ sinφ

cosφ = sinφ

φ = π/4

So ∫∫∫
z dV =

∫ 2π

0

∫ π/4

0

∫ 2

0

(ρ cosφ)(ρ2 sinφ) dρ dφ dθ

= 2π

[
sin2 φ

2

]π/4
0

[
ρ4

4

]2
0

= 2π

[
1

4

]
[4] = 2π

5. (7 points) Use Green’s theorem to find the work done by the force F = (x− 3y)i + (y − x)j
on a particle moving counter-clockwise around the circle (x− 2)2 + y2 = 4.

Solution:

Work =

∫
C

F ·T ds =

∫∫
D

(y − x)x − (x− 3y)y dA

=

∫∫
D

−1− (−3) dA

= 2

∫∫
D

1 dA (area of the circle)

= 2(π22) = 8π
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6. Consider the integral

∫ π

0

∫ π

x

sin y

y
dy dx

(a) (3 points) Sketch the region of integration.
Label all relevant intersection points.

x

y

−2−2 −1 1 2 3 4

−2−2

−1

1

2

3

4

•
(π, π)

π

(b) (5 points) Evaluate the integral above by reversing the order of integration.

Solution: ∫ π

0

∫ π

x

sin y

y
dy dx =

∫ π

0

∫ y

0

sin y

y
dx dy

=

∫ π

0

sin y dy

= − cos(y)
∣∣∣π
0

= 2

7. (6 points) Find the surface area of the part of the half-cone z =
√
x2 + y2

bounded from above by the plane z = 1.

Solution:

zx =
x√

x2 + y2
zy =

y√
x2 + y2

So surface area is given by∫∫
D

√
(zx)2 + (zy)2 + 1 dA =

∫∫
D

√
(

x2

x2 + y2
) + (

y2

x2 + y2
) +

x2 + y2

x2 + y2
dA

=

∫∫
D

√
2 dA

=
√

2

∫∫
D

dA

The cone is over the circle of radius 1 centered at the origin in the xy-plane. So using the area of a
circle formula we have the final result

=
√

2(π12) =
√

2π
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Multiple Choice. Circle the best answer. No work needed. No partial credit available.

8. (4 points) The surface ρ = 2 cosφ can be described as a

A. Plane

B. Half-Cone

C. Sphere
D. Paraboloid

E. None of the above

9. (4 points) Evaluate

∫∫∫
E

y dV , where E = {(x, y, z) | 0 ≤ x ≤ 3, 0 ≤ y ≤ x, x− y ≤ z ≤ x+ y}.

A. 9

B. 27
2

C. −9
2

D. 5
3

E. None of the above

10. (4 points) Find the mass of a wire that lies along the curve r(t) = (t2 − 1)j + 3tk, 0 ≤ t ≤ 2,
if the density is δ = 4z.

A. 50

B. 115

C. 125

D. 6π

E. None of the above
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11. (4 points) Consider the function f(x, y) = x2 + xy + y2 at the point (−1, 1).
In what direction does f decrease most rapidly?

A. 1√
2
〈1, 1〉

B. 1√
2
〈1,−1〉

C. 1√
2
〈−1, 1〉

D. 1√
2
〈−1,−1〉

E. None of the above

12. (4 points) Find the work done by the force F = 〈xy, y,−yz〉 over the curve r(t) = ti+t2j+tk, 0 ≤ t ≤ 1
in the direction of increasing t.

A. 1/4

B. 1/3

C. 1/2
D. 1

E. None of the above

13. (4 points) The vector field below could have been generated by which of the following?

A. xi + xyj
B. yi− x2j
C. −yi− xyj
D. xi− y2j
E. x2i− (y − x)j
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14. (4 points) Let F = 〈2x+ y, x+ z, y〉. Which of the following is true?

A. curl F = 2x+ y and div F = z − y + x.

B. curl F = 〈2, 0, 0〉 and div F = 0.

C. curl F = 〈0, 0, 0〉 and div F = 2.
D. curl F = 〈z,−y, x+ y〉 and div F = 2x+ y.

E. None of the above

15. (4 points) Find the absolute maximum and minimum values of f(x, y) = x2 − 2x+ y2

on the set D = {(x, y) | x2 + y2 ≤ 4}.
A. min = −1, max = 1

B. min = −4, max = 4

C. min = −1, max = 8
D. min = 0, max = 8

E. None of the above

16. (4 points) Estimate the change of the function f(x, y, z) = ln(x2 + y2 + z2) if the point P (x, y, z) moves
from P0(1, 1, 2) a distance of ds = 1

5
units in the direction of 3i + 6j− 2k.

A. 1

B. − 1√
5

C. 1√
5

D. 1
21

E. None of the above
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More Challenging Problem(s). Show all work to receive credit.

17. (6 points) Find the average value of the function f(x) =
∫ 1

x
cos(t2) dt on the interval [0, 1].

Solution: For 1-variable functions over intervals (calc 1) we have the average value of a function is

fave =
1

1− 0

∫ 1

0
f dx

=

∫ 1

0

∫ 1

x
cos(t2) dt dx

There is no closed form integral of cos(t2) so we need to be clever. Through drawing a picture of the region
and switching the bounds of integration

=

∫ 1

0

∫ t

0
cos(t2) dx dt

=

∫ 1

0
t cos(t2)dt (now use u-sub)

=

[
sin(t2)

2

]1
0

=
sin 1

2

18. TRUE or FALSE? Circle the right choice. No work needed

(a) (2 points) If F and G are vector fields, then curl(F + G) = curl(F) + curl(G).

A. TRUE
B. FALSE

(b) (2 points) If F and G are vector fields, then curl(F ·G) = curl(F) · curl(G).

A. TRUE

B. FALSE

(c) (2 points)

∫ 1

−1

∫ 1

0

ex
2+y2 sin y dx dy = 0

A. TRUE
B. FALSE

(d) (2 points) The integral

∫ 2π

0

∫ 2

0

∫ 2

r

dz dr dθ = 0 represents the volume enclosed by the cone

z =
√
x2 + y2 and the plane z = 2.

A. TRUE

B. FALSE


