THE SIXTEENTH HERZOG PRIZE EXAMINATION

November 5, 1988

Problem 1

Determine (with proof) which is larger, $\left(\frac{21}{20}\right)^{100}$ or 121.

Problem 2

Determine (with proof) whether an equilateral triangle can be placed in the plane so that the coordinates of all three vertices are integers.

Problem 3

Call a subset of $\{1,2,\ldots,n\}$ unfriendly if it contains no two consecutive integers. Prove that the number of unfriendly subsets of $\{1,2,\ldots,n\}$ is the $(n+1)^{\text{st}}$ Fibonacci number F_{n+1} . (Here the empty set counts as an unfriendly set. The Fibonacci numbers are defined by the recursion $F_{n+1} = F_n + F_{n-1}$ with $F_0 = F_1 = 1$.)

Problem 4

Determine (with proof) for which integers $\ n$

$$f(n) = n(n+1)(n+2)(n+3) + 1$$

is a perfect square.

Problem 5

Prove that the series

$$\sum_{n=0}^{\infty} (3x - x^2) \left(\frac{2x^2 - 5x + 2}{x + 2} \right)^n$$

converges for x in the interval [0,3]. Let f(x) be the sum of this series. Sketch the graph of f over [0,3].

Problem 6

Let v_1, v_2, \ldots, v_n be the (consecutive listed) vertices of a regular polygon inscribed in the unit circle. Prove that

$$|\mathbf{v}_1\mathbf{v}_2| \cdot |\mathbf{v}_1\mathbf{v}_3| \cdot |\mathbf{v}_1\mathbf{v}_4| \cdot \dots \cdot |\mathbf{v}_1\mathbf{v}_n| = n,$$

where $|\mathbf{v}_1\mathbf{v}_i|$ denotes the distance from \mathbf{v}_1 to \mathbf{v}_i .