THE NINETEENTH HERZOG PRIZE EXAMINATION November 16, 1991

- 1. The integer 1991 is a <u>palindromic</u> number. (It reads the same backward and forward). Prove that <u>every</u> palindromic number with an even number of digits (written as usual in base 10) is divisible by 11.
- 2. In the Fibonacci sequence $1, 1, 2, 3, 5, 8, \ldots$ defined by $a_0 = a_1 = 1$, $a_n = a_{n-1} + a_{n-2}$, express $a_{n-1}a_{n+1}$ in terms of a_n and prove that the resulting expression is correct.
- 3. Let f be a continuous real-valued function defined on the reals, and suppose that f has no fixed points (i.e. that $f(x) \neq x$ for every x). Prove that the iterated functions $f^2 = f \circ f$, $f^3 = f \circ f \circ f$,... also have no fixed points.
- 4. Let 3 points be contained in a parallelogram of area 1. Prove that the triangle determined by these points has area not exceeding $\frac{1}{2}$.
- 5. Let f be a differentiable real-valued function on the reals. Suppose that f(0) = 0, and that its first derivative f' is itself differentiable and monotone increasing. Prove that the function g defined by g(x) = f(x)/x is monotone increasing on $(0, \infty)$.
- 6. Let P(x) be a polynomial of degree greater than 2, all of whose zeros $r_1 < r_2 < \ldots < r_n$ are real and distinct. Let c be the critical value in the interval (r_1, r_2) whose existence is guaranteed by Rolle's theorem. Prove that c is nearer to r_1 than to r_2 . (Assume that P(x) has leading coefficient 1 for simplicity).