HERZOG MATH COMPETITION

November 14, 2015

Note: The grading will be similar to the grading of Putnam. This means you must explain your answers/steps as much as possible. An answer without any explanation will receive no credit.

1. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix such that $\sum_{j=1}^{n}\left|a_{i j}\right|<1$ for each i. Prove that $\mathrm{I}_{n}-A$ is invertible. Here I_{n} is the $n \times n$ identity matrix.
2. Prove that for any non-negative integer n, the number

$$
5^{5^{n+1}}+5^{5^{n}}+1
$$

is not prime.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $|f(x)-f(y)| \geq$ $|x-y|$ for all $x, y \in \mathbb{R}$. Prove that the range of f is all of \mathbb{R}.
4. Consider a circle of diameter $A B$ and center O, and the tangent t at B. A variable tangent to the circle with contact point M intersects t at P. Find the locus of the point Q where the line $O M$ intersects the parallel through P to the line $A B$.
5. A coin is tossed n times. What is the probability that two heads will turn up in succession somewhere in the sequence?
6. Show that the number 2002^{2002} can be written as the sum of four perfect cubes, but not as the sum of three perfect cubes.

