Michigan State University - Diagnostic Exam

6.6

  •   Find the solution(s) to the equation sinx  tan x = sin x  for 0≤ x <  2π  .

    a) π
--
4  b) π   5π
--, ---
4   4  c)    π
0, --
   4
       
    d)    π
0, -, π
   4  e)    π     5π
0, -, π, ---
   4     4

Solution:

⇒   sin x tanx - sin x = 0   ⇒    sin x(tanx - 1 ) = 0
                            ⇒    sin x = 0 or tan x = 1

It follows that

 sin x = 0   ⇒    x = 0, π
                     π- 5-π
tan x = 1   ⇒    x = 4 , 4

Diagnostic:

If you miss this question please review trigonometric equations.

Also, see 6.1: Trigonometry .


July 15, 2008