Michigan State University - Diagnostic Exam

6.11

  •   Let x = sinθ  with 0 ≤ θ ≤ π-
        2  . Which of the following is equivalent to the expression sin2-θ+  θ
  2  ?

    a) arcsin x + x b) arcsin x + x√ -------
  1 - x2 c)  x
---
sin + x
       
    d)   1
-----
sin x + x e)   1
-----
sinx + x√ -------
  1 - x2

Solution:

Notice that cos θ ≥ 0  and         √ -------
cos θ =   1 - x2   so that

sin-2θ          2sinθ-cos-θ
   2   + θ  =        2     +  arcsin x
                 √ -----2-
            =  x   1 - x + arcsin x

Diagnostic:

If you miss this question please review inverse trigonometric functions and double angle formulas.

Also, see 6.4: Trigonometric Identities .


July 15, 2008